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Abstract

This dissertation addresses the problem of real-time Simultaneous Localization and

Mapping (SLAM) in challenging environments. SLAM is one of the key enabling

technologies for autonomous robots to navigate in unknown environments by pro-

cessing information on their on-board computational units. In particular, we study

the exploration of challenging GPS-denied underwater environments to enable a wide

range of robotic applications, including historical studies, health monitoring of coral

reefs, underwater infrastructure inspection e.g., bridges, hydroelectric dams, water

supply systems, and oil rigs. Mapping underwater structures is important in several

fields, such as marine archaeology, Search and Rescue (SaR), resource management,

hydrogeology, and speleology. However, due to the highly unstructured nature of

such environments, navigation by human divers could be extremely dangerous, te-

dious, and labor intensive. Hence, employing an underwater robot is an excellent fit

to build the map of the environment while simultaneously localizing itself in the map.

The main contribution of this dissertation is the design and development of a

real-time robust SLAM algorithm for small and large scale underwater environments.

SVIn – a novel tightly-coupled keyframe-based non-linear optimization framework

fusing Sonar, Visual, Inertial and water depth information with robust initialization,

loop-closing, and relocalization capabilities has been presented. Introducing acoustic

range information to aid the visual data, shows improved reconstruction and local-

ization. The availability of depth information from water pressure enables a robust

initialization and refines the scale factor, as well as assists to reduce the drift for

the tightly-coupled integration. The complementary characteristics of these sensing
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modalities provide accurate and robust localization in unstructured environments

with low visibility and low visual features – as such make them the ideal choice for

underwater navigation. The proposed system has been successfully tested and val-

idated in both benchmark datasets and numerous real world scenarios. It has also

been used for planning for underwater robot in the presence of obstacles. Experi-

mental results on datasets collected with a custom-made underwater sensor suite and

an autonomous underwater vehicle (AUV) Aqua2 in challenging underwater environ-

ments with poor visibility, demonstrate performance never achieved before in terms

of accuracy and robustness.

To aid the sparse reconstruction, a contour-based reconstruction approach utiliz-

ing the well defined edges between the well lit area and darkness has been developed.

In particular, low lighting conditions, or even complete absence of natural light inside

caves, results in strong lighting variations, e.g., the cone of the artificial video light

intersecting underwater structures and the shadow contours. The proposed method

utilizes these contours to provide additional features, resulting into a denser 3D point

cloud than the usual point clouds from a visual odometry system. Experimental re-

sults in an underwater cave demonstrate the performance of our system. This enables

more robust navigation of autonomous underwater vehicles using the denser 3D point

cloud to detect obstacles and achieve higher resolution reconstructions.
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Chapter 1

Introduction

1.1 The Simultaneous Localization and Mapping Problem

Exploration and mapping underwater environments such as caves, bridges, dams, and

shipwreck, are extremely important tasks for the economy, conservation, and scien-

tific discoveries. Currently, most of these efforts are performed by divers that need

to take measurements manually using a grid and measuring tape, or using hand-held

sensors [39], and the data is post-processed afterwards. Autonomous Underwater

Vehicles (AUVs) present unique opportunities to automate this process; however,

there are several open problems that still need to be addressed for reliable robotic

exploration and navigation, including real-time robust Simultaneous Localization and

Mapping (SLAM), the focus of this dissertation. Fig. 1.1 shows mapping of an un-

derwater cave by an autonomous robot.

Figure 1.1: Underwater cave mapping using Aqua2 autonomous robot.

1
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Mapping is the process of constructing a map of an unknown environment online

given that the location of the robot is known and localization is the process of esti-

mating the robot’s poses given a map. Simultaneous Localization and Mapping

(SLAM) aims to solve the localization problem by building a map of the environment

in order to localize the robot within this map simultaneously by processing informa-

tion from on-board sensors. SLAM is a much harder problem as both the locations

and map are unknown and errors in map and pose estimates are correlated. In real

world, the associations between observations and the landmarks are unknown, and

wrong data associations could lead to divergence.

For a robot to localize itself in the environment, there might exist an external

infrastructure, e.g., Global Positioning System (GPS), motion capture system, etc.

However, these systems might not be always available depending on environments

such as underwater and may not be as accurate as required. As such, the simplest

method to localize a robot is to process the on-board sensory information to re-

cover the path incrementally which is known as odometry. However, odometry only

provides local consistency as computing incremental motion inevitably accumulates

drifts in the trajectory. On the other hand, the goal of SLAM is to obtain a global,

consistent, and drift-free estimate of the robot path by keeping track of a map of the

environment.

1.2 Challenges and Importance of Underwater SLAM

Underwater state estimation by an autonomous robot has many open challenges, in-

cluding visibility, light and color attenuation [87], floating particulates, blurriness,

varying illumination, and lack of features [65]. Indeed, in some underwater environ-

ments, there is very low visibility, which prevents seeing objects that are only a few

meters away – Fig. 1.3 represents few of these challenges. Such challenges make un-

derwater localization very challenging, leaving an interesting gap to be investigated

2
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in the current state of the art. In addition, light attenuates with depth, with some

wavelengths of the ambient light being absorbed very quickly – e.g., the red wave-

length is almost completely absorbed at 5 m. This results in a change in appearance

of the image, which will affect feature tracking, even in grayscale.

One of the primary motivations of this work is the mapping of underwater caves

where exploration by human divers is an extremely dangerous operation due to the

harsh environment. Figure 1.2 shows a typical cave segment. In addition to un-

derwater vision constraints, cave environments suffer from the absence of natural

illumination. Currently, for surveying, divers manually measure distances between

attachment points, using a cave-line with knots every 3 m. Simultaneously, the divers

also measure the water depth at each attachment point, as well as the azimuth of

the line leading to the next attachment point. This process is error-prone and time

consuming, and at greater depths results in significant decompression times, where

total dive time can reach between 15 to 28 hours per dive. Therefore, employing

robotic technology to map the cave would not only reduce the cognitive load of the

divers, but also save time and resources.

Figure 1.2: Typical scene from an underwater cave.
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The importance of underwater cave mapping spans several fields. First, it is cru-

cial in monitoring and tracking groundwater flows in karstic aquifers. According to

Ford and Williams [28], 25% of the world’s population relies on karst water resources.

Our work is motivated by the Woodville Karst Plain (WKP) which is a geomorphic

region that extends from Central Leon County around the “Big Bend” of Florida

[52]. Due to the significance of WKP, the Woodville Karst Plain Project (WKPP)

has explored more than 34 miles of cave systems in Florida since 1987 [11], proving

the cave system to be the longest in USA [37]. This region is an important source

of drinking water and is also a sensitive and vulnerable ecosystem. There is much to

learn from studying the dynamics of the water flowing through these caves. Volumet-

ric modeling of these caves will give researchers a better perspective about their size,

structure, and connectivity. These models have even greater importance than simply

enhancing the mapping. Understanding the volume of the conduits and how that

volume increases and decreases over space is a critical component to characterizing

the volume of flow through the conduit system. Current measurements are limited

to point-flow velocities of the cave metering system and a cross-sectional volume at

that particular point. The proposed approach results in 3-D reconstructions which

will give researchers the above described capabilities. Furthermore, volumetric mod-

els will be incredibly helpful for those involved with environmental and agricultural

studies throughout the area, and once perfected this technology could help map other

subterranean water systems, as well as any 3-D environment that is difficult to map.

The Woodville Karst Plain area is sensitive to seawater intrusions which threaten the

agriculture and the availability of drinking water; for more details see the recent work

by Zexuan et al. [104]. Second, detailed 3-D representations of underwater caves will

provide insights to the hydrogeological processes that formed the caves. Finally, be-

cause several cave systems contain historical records dating to the prehistoric times,

producing accurate maps will be valuable to underwater archaeologists.

4
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1.3 Sensors for Underwater SLAM

SLAM depends on the robot’s on-board exteroceptive sensing of the environment for

observations of landmarks which can be used to estimate the current pose of the robot.

LiDAR (Light Detection And Ranging), RADAR (RAdio Detection And Ranging),

SONAR (SOund Navigation And Ranging), or camera are the commonly used sensors

for solving the SLAM problem. LiDAR, RADAR, and SONAR directly measure

the 3D structure to build the map of environment, whereas cameras cannot recover

the range information from the measurements. Combining camera measurements

with other sensors, e.g., Inertial Measurement Unit, RGB-D camera, Time-Of-Flight

(ToF) etc, or stereo camera can recover the depth information. While SLAM can be

addressed using many different sensors and their combinations depending on indoor,

outdoor, and underwater for large scale or small scale environments, in this section

we describe the main sensors for underwater SLAM.

1.3.1 Acoustic Sensor based Underwater Navigation

Sonar based underwater SLAM and navigation systems have been exploited for many

years. Most of the underwater navigation algorithms [55, 53, 89, 44, 76] are based on

acoustic sensors such as Doppler Velocity Log (DVL), Ultra-Short Baseline (USBL),

and sonar. Nevertheless, collecting data using DVL, sonar, and USBL while div-

ing is expensive and sometimes not suitable in challenging underwater environment,

e.g., cave. Corke et al. [14] compared acoustic and visual methods for underwater

localization, showing the viability of using visual methods underwater in some sce-

narios. Folkesson et al. [27] used a blazed array sonar for real-time feature tracking.

A feature re-acquisition system with a low-cost sonar and navigation sensors were

described [23]. Below we provide a list of acoustic sensors used for underwater SLAM.
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• Doppler Velocity Log. A Doppler Velocity Log (DVL) is a sonar system

that emits sound bursts along beams angled downward in various directions

and measures the frequency shift of the echoes of these signals. As the DVL

is aboard a moving vehicle, returning echoes carry a change in pitch known as

the Doppler Effect. Combining these measurements provides the estimation of

the velocity with respect to static objects, such as the sea-floor or the surface.

• Ultra-Short Baseline An Ultra-Short Baseline (USBL) is an underwater

acoustic positioning system which consists of an array of acoustic transceivers

mounted on static object such as ship, and a transponder placed on an Au-

tonomous Underwater Vehicle (AUV) or a Remotely Operated Vehicle (ROV).

These two units work together to communicate the vehicle position relative

to the static object. The larger the spacing of acoustic array elements, the

higher the positioning accuracy of the USBL. USBL is suitable to find objects

on known GPS locations, examining the seabed, and record the exact location

for these findings.

• Sonar. Sonar determines the distance and direction of underwater objects

by acoustic means. Sound waves emitted by or reflected from the object are

detected by it and analyzed for calculating range information. Some major

categories of Sonars are imaging sonar, multibeam sonar, mechanical scanning

profiling sonar, echo-sounder, and side-scanner sonar. Contrary to vision, Sonar

measurements are not affected by turbidity or light and color attenuation, hence

making it a suitable complement of camera.

Robotic exploration of underwater caves is in its infancy. Visual odometry (VO)

is a challenging problem there due to the lack of natural light illumination and dy-

namic obstacles in addition to the underwater vision constraints i.e. light and color

attenuation. There are not many works for mapping and localization in an under-
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water cave. One of the first attempts was to explore a Cenote, a vertical shaft filled

with water [34], by the vehicle DEPTHX (DEep Phreatic THermal eXplorer) [91]

designed by Stone Aerospace [90], equipped with LiDAR and sonar. More recently,

Mallios et al. demonstrated the first results of an Autonomous Underwater Vehicle

(AUV) performing limited penetration inside a cave [57]. The main sensor used for

SLAM was a horizontally mounted scanning sonar. A robotic fish was proposed for

discovering underwater cave entrances based on vision and performing visual servo-

ing, with experiments restricted to a swimming pool [12]. More recently, Sunfish

[75] – an underwater SLAM system using a multibeam sonar, an underwater dead-

reckoning system based on a fiber-optic gyroscope (FOG) IMU, acoustic DVL, and

pressure-depth sensors – has been developed for autonomous cave exploration.

1.3.2 Vision-based Underwater Navigation

Exploiting SLAM techniques in underwater environment is a difficult task due to

the highly unstructured nature of the environment. However, camera is one of the

cheapest, small, light-weight, and energy-efficient sensors which provides rich and

versatile information about the environment. Salvi et al. [79] implemented a real-time

Extended Kalman Filter based SLAM incorporating a sparsely distributed robust

feature selection and 6-DOF pose estimation using only calibrated stereo cameras.

Johnson et al. [45] proposed an idea to generate 3D model of the seafloor from stereo

images. Beall et al. [7] presented an accurate 3D reconstruction on a large-scale

underwater dataset by performing bundle adjustment over all cameras and a subset of

features rather than using a traditional filtering technique. A stereo SLAM framework

named selective SLAM (SSLAM) for autonomous underwater vehicle localization was

proposed in [8].
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1.3.3 Underwater navigation fusing Vision with other sensors

Vision is often combined with IMU and other sensors for improved estimation of pose

for the complementary characteristics of these sensors. Visual-inertial SLAM systems

were proposed in [79, 7, 42, 41, 100] for underwater reconstruction and navigation.

Sáez et al. [78] proposed a 6DOF Entropy Minimization SLAM to create dense 3D

visual maps of underwater environments using a dense 3D stereo-vision system and

IMU; it is an offline method. Shkurti et al. [86] proposed a state estimation algo-

rithm for underwater robot by combining information from monocular camera, IMU,

and pressure sensor based on the multi-state constrained Kalman filter [62]. In the

following, we discuss sensors which can be fused together with vision to aid state

estimation.

• Pressure Sensor A pressure sensor measures water depth applied by both the

atmosphere and water column above it. Ferrera et al. [24] proposed a tightly-

coupled Visual-Inertial-Pressure SLAM for underwater.

• Inertial Measurement Unit. Inertial Measurement Units (IMU) are pro-

prioceptive sensors composed of a 3-axes gyroscope that measures the angular

velocity, and a 3-axes accelerometer that measures the linear acceleration of

the platform to which it is rigidly connected. As gyroscope provides velocity

measurements, robot orientation can be estimated by integrating these mea-

surements. Similarly, from accelerometer measurements it is possible to recover

the velocity and position of the robot by integration of the acceleration measure-

ments. However, unfortunately, in addition to sensor noises, both gyroscope and

accelerometer measurements are affected by slowly varying time-evolving biases

– as such simple integration of high-rate IMU measurements results into pose

estimates unreliable for long-term navigation. Furthermore, the accelerometer

is subject to gravity and needed to be subtracted to compute motion.
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With the recent advancements of hardware design and manufacturing, low-cost

light-weight Micro Electro-Mechanical Systems (MEMS) IMUs have become ex-

tremely popular which enables to put them into any electronic system including

mobile phone, allowing high-accuracy localization. While vision observes the

external world, an IMU provides information of self-motion, which makes both

sensors complementary. In addition, combining vision with IMU can solve the

scale issue in monocular vision-based SLAM, as it can be used estimate the

motion between camera frames. Gravity can also be estimated which makes

two rotational DoF i.e., absolute pitch and roll observable – another advantage

of integrating vision with IMU. However, in order to fuse IMU and vision, both

sensors should be synchronized perfectly such that the measurements from both

sensors are timestamped with the same clock without any offset.

1.4 Motivation

The underwater environment presents unique challenges to vision-based state estima-

tion. In particular, suspended particulates, blurriness, and light and color attenuation

result in features that are not as clearly defined as above water. Consequently, re-

sults from different vision-based state estimation packages show a significant number

of outliers resulting in inaccurate estimate or even complete tracking loss. To illus-

trate these challenges we present next a comprehensive study of the performances of

state-of-the-art open-source Visual and Visual-Inertial state estimation algorithms in

underwater domain and draw out the scope of improvements by introducing acoustic

and pressure sensor [69, 46].

1.4.1 Underwater Datasets

Most of the standard benchmark datasets for SLAM represent only a single scenario,

such as a lab space (e.g. [93, 10]), or an urban environment (e.g. Kitti [35]), and
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Sample images from the evaluated datasets. (a) UW sensor suite outside
a sunken bus (NC); (b) UW sensor suite inside a sunken bus (NC); (c) UW sensor
suite inside a cave (FL); (d) UW sensor suite mounted on a Diver Propulsion Vehicle
(DPV) over a coral reef; (e) Aqua2 AUV over a coral reef; (f) AUV over a fake
cemetery (SC).
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with good visual quality. The limited nature of the public datasets is one of the

primary motivations to evaluate these packages with datasets collected by our lab

over the years in more challenging environments, such as underwater. We made these

datasets publicly available (https://afrl.cse.sc.edu/afrl/resources/datasets/) for the

research community and to present the challenges that an autonomous robot would

need to face to operate safely and reliably in real-world conditions. We categorized

the datasets according to the robotic platform used for collecting them:

• Underwater sensor suite operated by a diver around a sunken bus (Fantasy

Lake, North Carolina) – see Fig. 1.3(a),(b) – and inside an underwater cave

(Ginnie Springs, Florida); see Fig. 1.3(c). The custom-made underwater sensor

suite is equipped with an IMU operating at 100 Hz (MicroStrain 3DM-GX15)

and a stereo camera running at 15 fps, 1600× 1200 (IDS UI-3251LE).

• Underwater sensor suite mounted on an Diver Propulsion Vehicle (DPV). Data

collected over the coral reefs of Barbados; see Fig. 1.3(d).

• Aqua2 Autonomous Underwater Vehicle (AUV) over a coral reef (Fig. 1.3(e))

and an underwater structure (Lake Jocassee, South Carolina) (Fig. 1.3(f)), with

the same setup as the underwater sensor suite.

1.4.2 Performances of state-of-the-art Visual and Visual-Inertial State

Estimation Algorithms in Underwater

We have considered ten state estimation packages which are characterised by the

following:

• number of cameras, e.g., monocular, stereo, or multiple cameras;

• the presence of an IMU ;

• direct vs. indirect (feature-based) methods;
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• loosely vs. tightly-coupled optimization when multiple sensors are used – e.g.,

camera and IMU;

• the presence of a loop closing mechanism.

Table 1.1 lists the methods evaluated and their properties.

Table 1.1 Summary of characteristics for evaluated methods.

Method Camera IMU Indirect/ (L)oosely/ Loop
Direct (T)ightly Closure

LSD-SLAM [21] mono no direct N/A yes
DSO [20] mono no direct N/A no
SVO [30] multi optional semi-direct N/A no
ORB-SLAM2 [63] mono, stereo no indirect N/A yes
REBiVO [95] mono optional indirect L no
Mono-MSCKF [74] mono yes indirect T no
Stereo-MSCKF [94] stereo yes indirect T no
ROVIO [9] multi yes direct T no
OKVIS [56] multi yes indirect T no
VINS-Mono [67] mono yes indirect T yes

The overall performance of the tested packages is shown in Table 1.2. LSD-SLAM

[21], REBiVO [95], and Monocular SVO were unable to produce any consistent results,

as such, they have been excluded. It is clear that direct VO approaches are not

robust as there are often no discernible features and requires accurate photometric

calibration. As such DSO and SVO, quite often fail to track the complete trajectory,

however, they produced good dense 3D reconstruction for the tracked parts. Similar

approaches that depend on the existence of a specific feature, such as edges, are not

appropriate in underwater environments in general. Visual-inertial systems – e.g.,

OKVIS, VINS-Mono, and ROVIO – performed better in comparison to pure vision-

based methods. Overall, as expected, stereo performed better than monocular, the

presence of loop closure enabled the VO/VIO packages showed reduced drift in the

trajectory, and the presence of inertial data aided to produce both the accurate the

scale estimation along with poses.

12



www.manaraa.com

Table 1.2 Performance of the different open source packages. Datasets: UW sensor
suite outside a sunken bus (Bus/Out); UW sensor suite inside a cave (Cave); Aqua2
(AUV) over a fake cemetery (Aqua2Lake) at Lake Jocassee; UW sensor suite inside
a sunken bus (Bus/In); UW sensor suite mounted on a Diver Propulsion Vehicle
over a coral reef (DPV); Aqua2 AUV over a coral reef (Aqua2Reef). Qualitative
analysis: the color chart legend is: red–failure; orange–partial failure; yellow–partial
success; green-success.
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1.5 Contributions

This dissertation focuses on real-time, robust, and accurate state estimation in chal-

lenging environments for autonomous mobile robots deployed in real world conditions.

A keyframe-based tightly-coupled formulation of an underwater SLAM system com-

bining multiple sensor information has been designed and developed. In particular,

we made the following contributions:

A robust SLAM system combining Sonar, Visual, Inertial and water

Depth information. We propose a tightly-coupled keyframe-based SLAM system

fusing Sonar, Visual, Inertial and Depth information in a non-linear optimization-

based framework for underwater domain. The underwater domain presents unique

challenges in the quality of the visual data available; as such, augmenting the exte-

roceptive sensing with acoustic range data results in improved reconstructions of the

underwater structures. Depth data from water pressure measurement bounds the lo-

calization error. The proposed tightly-coupled formulation considers all correlations
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amongst these four sensors which is the key for high-precision localization. Moreover,

to ensure real-time operation, a bounded sliding window of states are maintained for

optimization through marginalization of past measurements and states while incor-

porating the prior in optimization. To address drift and loss of localization – one of

the main problems affecting other packages in underwater domain – a robust initial-

ization method to refine scale using depth measurements, a fast pre-processing step

to enhance the image quality, and a real-time loop-closing and relocalization method

using bag of words (BoW) have been provided. To validate the robustness and accu-

racy of our approach, we deployed an autonomous underwater vehicle (AUV) Aqua2

running our method on-board. Further datasets were collected with a custom-made

underwater sensor suite both on hand-held mode while diving and deploying with a

Diver Propulsion Vehicle (DPV). Experimental results from underwater wrecks, an

underwater cave, a fake underwater cemetery, over coral reefs, and a submerged bus

demonstrate the performance of our approach.

A contour-based reconstruction of underwater environment. Another

contribution is a contour-based real-time reconstruction of an underwater environ-

ment using Sonar, Visual, Inertial, and Depth data. A central observation guiding

this work is the fact that visual features, such as shadows, occlusion edges, and the

boundaries illuminated by the artificial video light – are all located at the floor, ceil-

ing, and walls of the underwater structures. As such, in addition to the tracked

visual features and sonar features produced by the SLAM system during local map-

ping and local tracking, the proposed method utilizes visual features on these well

defined edges on the boundaries for the 3D reconstruction of the surroundings. Ex-

perimental result in an underwater cave validates the method providing an improved

reconstruction with a dense point cloud.
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Chapter 2

Background and Related Work

Visual odometry (VO) is the problem of estimating the camera poses from a set of

images sharing a common field-of-view (FOV). Please refer to [31, 32] for the funda-

mentals and practices in VO. While VO recovers frame-to-frame motion estimation,

visual SLAM (V-SLAM) refers a more complete, accurate, and consistent system in-

tegrating a loop-closure mechanism and possibly a global optimization step to obtain

a consistent map. There are two main approaches for solving visual SLAM: feature-

based and direct methods. In this chapter, we revise the SLAM pipeline and describe

the state-of-the-art visual SLAM systems based on feature-based and direct methods

along with some intermediate categories.

2.1 Feature-based (Indirect) Visual SLAM Methods

Feature-based methods pre-process images to find keypoints which are distinctive in-

terest points in a scene with high intensity gradient and establish correspondences,

then optimize the geometric error. Ideally, these keypoints can be reliably and repeat-

edly detected in subsequent images of the same scene under variations of illumination

conditions and different viewpoints. A descriptor is a vector of binary or real val-

ues, which describes the image patch around an interest point. Together an interest

point and its descriptor is usually called a feature. Feature matching across images

using binary descriptors – for example, BRISK (Binary Robust Invariant Scalable

Keypoints), BRIEF (Binary Robust Independent Elementary Features), ORB (Ori-

ented FAST and rotated BRIEF) – becomes very fast as it requires only descriptor
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comparison for a similarity measure. A typical VO pipeline requires the following

steps:

• feature detection

• feature matching

• motion estimation of calibrated camera via 2D-to-2D and 3D-to-2D (Perspective

from N Points (PnP)) correspondences

• local optimization (windowed bundle adjustment)

Feature-based optimization computes the camera poses and the 3D landmarks by

minimizing the reprojection error. Given a correspondence between a 3D point in

world coordinates frame PW and a 2D keypoint pC in a monocular camera coordinate

frame, the reprojection error, eproj is defined as:

eproj = pC − hm(CRWPW + CtW ) (2.1)

where hm(·) is the camera projection model, CRW ∈ SO(3) and CtW ∈ R3 are the

rotation and translation respectively from world to camera coordinates.

2.1.1 Monocular and Stereo Visual Odometry/SLAM systems

The literature presents many vision-based state estimation techniques, which use ei-

ther monocular or stereo cameras including, MonoSLAM [17], PTAM [48], and ORB-

SLAM [63]. To avoid scale ambiguity in monocular system, stereo camera pairs are

used. Oskiper et al. [66] proposed a real-time VO using two pairs of backward and

forward looking stereo cameras and an IMU in GPS denied environments. Howard

[43] presented a real-time stereo VO for autonomous ground vehicles. This approach

is based on inlier detection— i.e., using a rigidity constraint on the 3D location of

features before computing the motion estimate between frames. Konolige et al. [49]
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presented a real-time large scale VO on rough outdoor terrain integrating stereo im-

ages with IMU measurements. Kitt et al. [47] presented a visual odometry based only

on stereo images using the trifocal geometry between image triples and a RANSAC

based outlier rejection scheme. Their method requires only a known camera geom-

etry where no rectification is needed for the images. Badino et al. [6] proposed a

new technique for improved motion estimation by using the whole history of tracked

features for real-time stereo VO.

PTAM (Parallel Tracking And Mapping) [48] is the first keyframe-based monocu-

lar SLAM algorithm able to handle Bundle Adjustment in real-time. The key idea is

to split the tracking and mapping, thus offloading the accurate refinement using ex-

pensive batch optimization (bundle adjustment) to a background thread. This allows

the tracking thread to obtain feature tracking and pose estimation in real-time, even if

the bundle adjustment takes longer. The proposed system was specifically designed

for a small AR workspace without any prior knowledge of the scene. MonoSLAM

[17] is a monocular vision based real-time SLAM approach which includes an active

approach to mapping and measurement, a general motion model for smooth camera

movement, and solutions for monocular feature initialization and feature orientation

estimation.

Loop closure – the capability of recognizing a place that was seen before – is an

important component to mitigate the drift of the state estimate in a sliding window

and marginalization-based framework. Currently ORB-SLAM [63] and its extension

with IMU [64] is one of the most reliable and complete vision-based SLAM systems

with loop-closing and relocalization capabilities. ORB-SLAM is build on the main

ideas of PTAM, the place recognition work of Gálvez-López and Tardós based on

bag-of-words (BoW) method, and the loop closing of Strasdat et al. [38].
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2.1.2 Visual-Inertial Odometry/SLAM

To improve the pose estimate, vision is augmented with IMU for their complementary

characteristics, commonly known as Visual-Inertial Navigation Systems (VINS). Fil-

tering and optimization are the two approaches to optimally fuse IMU measurements

and camera images to provide motion estimation.

Mourikis and Roumeliotis [62] developed one of the earliest successful real-time

tightly coupled VINS algorithms based on Extended Kalman Filter (EKF), known as

the Multi-State Constraint Kalman Filter (MSCKF). In particular, instead of adding

features to the state vector, MSCKF performs nonlinear-triangulation of landmarks

from a window of camera poses over time and obtains motion constraints that are

used for EKF update. While this operation reduces the computational complexity

by removing the need of co-estimating potentially hundreds and thousands of visual

features, it also prevents the re-linearization of the non-linear feature measurements

at later times, thus deteriorating accuracy and performance. Stereo-MSCKF [94], an

extension of MSCKF, uses the Observability Constrained EKF (OC-EKF) [40], which

does not heavily depend on an accurate initial estimation. Also, the camera poses in

the state vector can be represented with respect to the inertial frame instead of the

latest IMU frame so that the uncertainty of the existing camera states in the state

vector is not affected by the uncertainty of the latest IMU state during the propagation

step. As a result, Stereo-MSCKF can initialize well enough even without a perfect

stand still period. It uses the first 200 IMU measurements for initialization and is

recommended to not have fast motion during this period. REBiVO [95] (Realtime

Edge Based Inertial Visual Odometry) is another filtering based approach which

has been specifically designed for Micro Aerial Vehicles (MAV). This approach first

processes the images to detect edges to track and map.

The other spectrum of methods optimizes the sensor states, possibly within a slid-

ing window, formulating the problem as a graph optimization problem. In contrast to
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filtering-based methods, batch optimization methods solve a non-linear least-squares

(bundle adjustment [96]) problem over a set of visual and inertial measurements, al-

lowing for the reduction of highly non-linear error through iterative re-linearization

but have high computational cost. For feature-based visual-inertial systems, as in

OKVIS [56] and Visual-Inertial ORB-SLAM [64], the optimization function includes

the IMU error term and the reprojection error. The frontend tracking mechanism

maintains a local map of features in a marginalization window which are never used

again once out of the window. VINS-Mono [67] uses a similar approach and main-

tains a minimum number of features for each image and existing features are tracked

by Kanade-Lucas-Tomasi (KLT) sparse optical flow algorithm in the local window.

Delmerico and Scaramuzza [18] did a comprehensive comparison specifically moni-

toring resource usage by the different methods. While KLT sparse features allows

VINS-Mono to run in real-time on low-cost embedded systems, it often results into

tracking failure in challenging environments, e.g., underwater environments with low

visibility. In addition, for loop detection additional features and their descriptors are

needed to be computed for keyframes.

2.2 Direct Visual SLAM

Direct methods compare raw pixel intensities in the image and optimize the photo-

metric error. Given the 2D coordinates of a pixel p = (u, v)T and the intensity of

that pixel in the reference image Iref (p). Let I′(p′) be the current image after the

camera motion. In direct method based tracking, an increment of the camera motion

parameters ∆θ ∈ Rd is calculated by minimizing the photometric error, defined as:
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∆θ∗ = arg min
∆θ

∑
p∈Ωref

∥∥∥I′(w(p;θ � ∆θ))− Iref (p)
∥∥∥2

(2.2)

where Ωref is a subset of pixel coordinates of interest in the reference frame, w(·) is a

warping function that depends on the parameter vector we seek to estimate, and θ is

an initial estimate of the motion parameters. At each iteration, the current estimate

of parameters is updated (i.e. θ ← θ�∆θ), where� generalizes the addition operator

over the optimization manifold.

In direct methods, all information in the image can be exploited, however, they

require a good initial guess and high frame rate with very limited frame-to-frame

motion due to the photometric consistency assumption. Recently, direct methods

– e.g., LSD-SLAM [21], DSO [20] – based SLAM systems show promising perfor-

mance in 3-D reconstruction of large-scale map in real time while feature-based ap-

proach produces a very sparse map, as well as accurate pose estimation based on

direct image alignment. In addition, in comparison to the indirect methods, di-

rect approaches have potentials in textureless scenarios. However, theses methods

are sensitive to the brightness consistency assumption which limits the baseline of

the matches and in low visibility with small contrast environment like underwater,

often result into tracking loss [46]. In addition, direct method suffers in presence

of strong geometric noise, such as rolling shutter. For good reconstruction, they

require perfect photometric calibration for modeling gain and exposure. DSO [20]

shows an improvement in performance providing a full photometric calibration that

accounts for lens attenuation, gamma correction, and known exposure times. In

purely monocular vision based direct SLAM, like DSO, the initialization is slow and

requires very small rotational change. As such, indirect methods are more widely

used in practical applications due to its maturity and robustness. FAB-MAP [16,

15] is an appearance-based method to recognize places in a probabilistic framework.
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LSD-SLAM is another well-known direct SLAM method to build large scale semi-

dense maps for indoor and outdoor environments which operates in real time without

any GPU acceleration. The photometric error is used to estimate motion between

camera frames, while inverse depth estimation is calculated using small baseline stereo

with fixed camera. ROVIO (Robust Visual Inertial Odometry) [9] employs an Iterated

Extended Kalman Filter to tightly fuse IMU data with images from one or multiple

cameras. The photometric error is derived from image patches that are used as

landmark descriptors and is included as residual for the update step.

2.3 Semi-direct Method

Semi-Direct Visual Odometry is an in-between approach which utilizes both the di-

rect and feature-based method for motion estimation, e.g., SVO [30] relies on direct

method for tracking and triangulating pixels with high image gradients and a feature-

based method for jointly optimizing structure and motion. It uses the IMU prior for

image alignment and can be generalized to multi-camera systems. SVO [30] is able

to track the camera pose over long trajectories, even in parts with few features by

creating a depth map of a scene. SVO has been extended to support stereo cameras

and inertial measurements, however, it is sensitive to large rotational change in the

scene and does not support map reuse or loop-closure.

2.4 Structure-from-Motion (SfM) and Multiview Stereo (MVS)

Structure-from-Motion (SfM) is the problem of recovering relative camera poses as

well as the 3-D structure from a set of calibrated or uncalibrated camera images.

SfM from unstructured collections of photographs to build the 3-D model of the

scene has been addressed in different solutions, Bundler [88] and VisualSFM [101].

They provided algorithmic analysis to improve computational complexity and per-
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formance accuracy. COLMAP [82, 83] proposes a SfM algorithm to improve on the

state-of-the-art incremental SfM methods for 3D reconstruction from unordered im-

age collections. They provide scene graph augmentation, a next best view selection

mechanism, and an efficient triangulation and Bundle Adjustment (BA) technique.

COLMAP jointly estimates depth and surface normal, by leveraging photometric

and geometric priors for pixel-wise view selection, and utilizes geometric consistency

for simultaneous refinement. COLMAP outperforms state-of-the-art SfM system on

benchmark datasets with a large number of photos from Internet with varying camera

density and distributed over large area.

Multiview Stereo (MVS) is another well known method for reconstruction. Merrell

et al. [59] presented a viewpoint-based approach to fuse multiple stereo depth maps for

reconstructing 3-D shape from video. By decoupling the processing into two stages,

they are able to run large-scale reconstruction in real-time using a GPU implemen-

tation for efficient computation. The computational power available on board of the

robot is very limited, making the deployment of bundle adjustment based methods

not feasible on the robot.

2.5 Non-linear Least-Squares Problems

Bundle adjustment (BA) is the problem of refining a visual reconstruction to produce

jointly optimal 3D structure and viewing parameters, i.e., camera pose and/or cali-

bration estimates. BA and graph optimization problems are modeled as non-linear

least-squares optimization problems. Given a system described by a set of m obser-

vation functions [f1(x), ...fm((x)]T , the state vector x ∈ Rn of n dimensional vector

of variables, and zi be a measurement of the state x with ẑi = fi(x) be a function

which maps x to a predicted measurement ẑi, the error ei is defined as the difference

between the predicted and actual measurement:
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ei(x) = zi − ẑi = zi − fi(x) (2.3)

The error is assumed to be normally distributed and has a zero mean Gaussian error

with information matrix Ωi. The non-linear least-squares approach estimates the

parameter values that minimizes the weighted Sum of Squared Error (SSE) cost or

error function. The squared error depends only on the states and can be defined as:

ei(x) = ei(x)TΩiei(x) (2.4)

The goal of optimization problem is to find the state x∗ which minimizes the error

given all the measurements:

x∗ = arg min
x

∑
i

ei(x)

= arg min
x

∑
i

ei(x)TΩiei(x) (2.5)

The two main stream algorithms to solve non-linear least-squares problems are

Line Search (e.g., gradient descent, Newton’s method, and Quasi-Newton method)

and Trust Region (Levenberg-Marquardt, and Dogleg). The assumptions are that a

“good” initial guess of the state is available and the error functions are “smooth”

in the neighborhood of the minima. Both of them perform repeatedly iterative local

linearization with the following steps until convergence:

• Linearize the error terms around the current solution/initial guess by Taylor

expansion:

ei(x + ∆x) ≈ ei(x) + Ji(x)∆x (2.6)

where ∆x is the correction to the state vector x and Ji is the Jacobian (first-

order partial derivatives) computed at the current estimate of the state vector.
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• Compute the first derivative of the squared error function and set it to zero.

This step involves computing the global squared error in the neighborhood of

the current solution x which takes the form:

F (x + ∆x) '
∑
i

ei(x + ∆x) = eTi (x + ∆x)Ωiei(x + ∆x)

= c+ 2bT∆x + ∆xTH∆x (2.7)

where H, b, and c are computed as follows:

c =
∑
i

ei(x)TΩiei(x)

bT =
∑
i

ei(x)TΩiJi(x)

H =
∑
i

Ji(x)TΩiJi(x) (2.8)

Taking the derivative of F (x + ∆x) and setting it to zero gives the normal

equation:

∂F (x + ∆x)
∂∆x

' 2b + 2H∆x

0 = 2b + 2H∆x

H∆x = −b (2.9)

• Iteratively solve the normal equation to obtain the increment ∆x∗:

∆x∗ = −H−1b (2.10)

The linear system can be solved efficiently using Cholesky factorization, QR

decomposition, or Conjugate Gradients (for large systems) without matrix in-

version. These methods are much faster and numerically more accurate than

explicit matrix inversion, particularly for sparse matrices.

• Update the new state which is hopefully closer to the minimum:

x← x + ∆x∗ (2.11)
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Please refer to [96] which presents a comprehensive study on efficiently designing and

solving a BA problem.

The state space for the BA system – containing a set of camera poses and point

feature positions – can be parameterized in many different ways, which include the

minimal representations for rotation, such as, Euler angles, unit quaternions, or mod-

ified Rodrigues parameters. However, all the minimal representations for the Special

Orthogonal Group SO(3) group have singularities or extra constraints on the param-

eters which present unnecessary challenges to the optimization process. For example,

Euler angles suffer from the Gimbal lock singularity, unit quaternions must maintain

the unit-length constraint, and rotation matrix must maintain orthogonality with

positive unit determinant. The least-squares optimization methods either require

the addition of extra equations or an explicit normalization step to enforce this con-

straint. The group SO(3) also forms a smooth manifold. The tangent space of the

manifold at the identity is denoted as so(3) known as Lie Algebra. Similarly, Special

Euclidean Group SE(3) which describes the group of rigid motion in 3D, is defined as

SE(3) = {(R, t) : R ∈ SO(3), t ∈ R3}, and its associated algebra is denoted as se(3).

These manifolds act as a real vector space locally, but can encode a more complex

global topology, such as that of SO(3) and SE(3). Parameterizations of SO(3) and

SE(3) manifolds for non–linear optimization is explained in details in [29].

25



www.manaraa.com

Chapter 3

SVIN: An Underwater SLAM System using

Sonar, Visual, Inertial, and Depth Sensor

3.1 Introduction

In recent years, many vision-based state estimation algorithms have been developed

using monocular, stereo, or multi-camera system mostly for indoor and outdoor en-

vironments. Vision is often combined with Inertial Measurement Unit (IMU) for

improved estimation of pose in challenging environments, termed as Visual-Inertial

Odometry (VIO) or Visual-Inertial SLAM [64, 56, 67, 62, 94]. However, the under-

water environment – e.g., see Fig. 3.1 – presents unique challenges to vision-based

state estimation. As shown in previous studies [69, 46], it is not straightforward to

deploy the available vision-based state estimation packages underwater. In partic-

ular, the low lighting conditions or complete absence of natural light, variation of

illuminations, and lack of reliable visual features, make vision-based estimation very

Figure 3.1: Underwater cave in Ginnie Springs, FL, where data have been collected
using an underwater stereo rig.
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difficult for underwater. As such, we propose a SLAM system combining acoustic and

visual information by taking advantages of the complimentary sensing capabilities of

these sensors in challenging and highly unstructured underwater environments.

In this chapter, we describe the formulation of a novel SLAM system, SVIn,

targeted for underwater environments – e.g., wrecks and underwater caves – and easily

adaptable for different sensor configuration: acoustic (mechanical scanning profiling

sonar), visual (stereo camera), inertial (linear accelerations and angular velocities),

and depth data. This makes our system versatile and applicable on-board of different

sensor suites and underwater vehicles. The idea is that acoustic range data, though

sparser, provide robust information about the presence of obstacles, where visual

features reside; together with a more accurate estimate of scale. To fuse range data

from sonar into the traditional VIO framework, we propose a new approach of taking

a visual patch around each sonar point, and introduce extra constraints in the pose

graph using the distance of the sonar point to the patch. The proposed method

operates under the assumption that the visual-feature based patch is small enough

and approximately coplanar with the sonar point. The resulting pose-graph consists

of a combination of visual features and sonar features. In addition, we adopt the

principle of keyframe based approaches to keep the graph sparse enough to enable

real-time optimization. A particular challenge arises from the fact that the sonar

features at an area are sensed some time after the visual features due to the different

field of view of the two sensors.

In our recent work, [72], acoustic, visual, inertial, and water depth data is fused

together to map different underwater structures by augmenting the visual-inertial

state estimation package OKVIS [56]. This improves the trajectory estimate espe-

cially when there is varying visibility underwater, as sonar provides robust informa-

tion about the presence of obstacles with accurate scale. However, in long trajecto-

ries, drifts could accumulate resulting in an erroneous trajectory. In [73], we extend
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our work by including an image enhancement technique targeted to the underwater

domain, introducing depth measurements in the optimization process, loop-closure

capabilities, and a more robust initialization. These additions enable the proposed

approach to robustly and accurately estimate the sensor’s trajectory, where every

other approach has shown incorrect trajectories or loss of localization.

To validate our proposed approach, first, we assess the performance of the pro-

posed loop-closing method, by comparing it to other state-of-the-art systems on the

EuRoC micro-aerial vehicle public dataset [10], disabling the fusion of sonar and

depth measurements in our system. Second, we test the proposed full system on

several different underwater datasets in a diverse set of conditions. More specifically,

underwater data – consisting of visual, inertial, depth, and acoustic measurements –

has been collected using a custom made sensor suite [71] from different locales; fur-

thermore, data collected by an Aqua2 underwater vehicle [19] include visual, inertial,

and depth measurements.

The results on the underwater datasets illustrate the loss of tracking and/or failure

to maintain consistent scale for other state-of-the-art systems while our proposed

method maintains correct scale without diverging. Experimental data were collected

from the Ginnie ballroom cavern at High Springs, in Florida; a submerged bus in

North Carolina; a fake underwater cemetery in Lake Jocassee in South Carolina;

and an artificial shipwreck in Barbados. The custom-made sensor suite (described in

Chapter 5) and Aqua2 robot employing stereo camera, mechanical scanning profiling

sonar, IMU, and pressure sensor have been used for data collection.

The chapter is structured as follows. Section 3.2 - Section 3.3 presents the overview

of proposed pipeline along with the approach developed for image preprocessing step

and the notations, Section 3.4 describes the mathematical formulation and derivation

of the tightly-coupled Sonar, stereo camera, inertial, and depth sensor integration.

Section 3.5 and Section 3.6 present pose initialization, loop-closure, and relocalization
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step respectively. We conclude this chapter with a discussion on lessons learned and

directions of future work. Experimental results from a publicly available aerial dataset

and a diverse set of challenging underwater environments will be presented in Chapter

6.

3.2 System Overview

This section describes the proposed system, SVIn2, depicted in Fig. 3.2. The full

proposed state estimation system can operate on a robot that has stereo camera,

IMU, sonar, and depth sensor – the last two can be also disabled to operate as a

visual-inertial system.

Due to low visibility and dynamic obstacles, it is hard to find good features to

track in underwater. In addition to the underwater vision constraints, e.g., light

and color attenuation, vision-based systems also suffer from poor contrast. Hence,

we augment the pipeline by adding an image pre-processing step to improve feature

detection underwater. In particular, we use a contrast limited adaptive histogram

equalization (CLAHE) filter in the image pre-processing step.

In the following, after defining the state, we describe the proposed initialization,

sensor fusion optimization, loop closure and relocalization steps.

3.3 Notations and States

The full sensor suite is composed of the following coordinate frames: Camera (stereo),

IMU, Sonar (acoustic), Depth (pressure), and World which are denoted as C, I, S,

D, and W respectively. The transformation between two arbitrary coordinate frames

X and Y is represented by a homogeneous transformation matrix XTY = [XRY |XpY ]

where XRY is rotation matrix with corresponding quaternion XqY and XpY is position

vector.
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Pose
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Figure 3.2: Block diagram of the proposed system, SVIn2; in yellow the sensor input,
in green the components from OKVIS, in red the contribution from our work [72],
and in blue the contributions in [73].

Let us now define the robot R state xR that the system is estimating as:

xR = [WpTI ,WqTI ,WvTI ,bgT ,baT ]T ∈ R3 × SO(3)× R9 (3.1)

which contains the position WpI , the attitude represented by the quaternion WqI ,

the linear velocity WvI , all expressed as the IMU reference frame I with respect

to the world coordinate W ; moreover, the state vector contains the gyroscopes and

accelerometers bias bg and ba.

The associated error-state vector is defined in minimal coordinates, while the per-

turbation takes place in the tangent space of the state manifold. The transformation

from minimal coordinates to tangent space can be done using a bijective mapping [56,

29]:

δχR = [δpT , δθT , δvT , δbgT , δbaT ]T ∈ R15 (3.2)

The above represents the error for each component of the state vector with δθ ∈

R3 being the minimal perturbation for rotation (can be converted to its quaternion

equivalent via exponential mapping).
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3.4 Tightly-coupled Non-Linear Optimization with

Sonar-Visual-Inertial-Depth (SVIND) Measurements

In this section, we propose to tightly fuse stereo vision, acoustic, inertial, and pressure

measurements within our SLAM system. For the tightly-coupled non-linear optimiza-

tion, we use the following cost function J(x), which includes the reprojection error er

and the IMU error es with the addition of the sonar error et, and the depth error eu:

J(x) =
2∑
i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,kT

r Pk
rei,j,kr +

K−1∑
k=1

ekT

s Pk
seks

+
K−1∑
k=1

ekT

t Pk
t ekt +

K−1∑
k=1

ek
T

u P k
u e

k
u (3.3)

where i denotes the camera index – i.e., left (i = 1) or right (i = 2) camera in a stereo

camera system with landmark index j observed in the kth camera frame. Pk
r , Pk

s , Pk
t ,

and P k
u represent the information matrix (weights) of visual landmarks, IMU, sonar

range, and depth measurement for the kth frame respectively.

For completeness, we discuss the formulation in details for each of the error terms.

The reprojection error describes the difference between a keypoint measurement in

camera coordinate frame C and the corresponding landmark projection according to

the projection model. The IMU error term combines all accelerometer and gyroscope

measurements by IMU pre-integration [29] between successive camera measurements

and represents the pose, speed and bias error between the prediction based on previous

and current states. Both reprojection error and IMU error term follow the formulation

by Leutenegger et al. [56]. Sonar error limits error in the trajectory using the range

constraint between acoustics measurement and visual feature patch as well as provides

additional points for the 3D reconstruction. At last, the depth error bounds the error

in the gravity direction. All the error terms are added in the Google’s Ceres Solver –

the non-linear optimization framework – [2] to estimate the robot state in real-time.
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3.4.1 IMU Error Term Formulation

An Inertial Measurements Unit (IMU) provides accelerometer and gyroscope readings

– integrating them leads to a dead-reckoning positioning system which drifts fast

with time. By fusing the dead-reckoning with absolute positioning readings (for

example, vision), drifts can be avoided. Below we present the detailed formulation

of non-linear IMU kinematics and bias model, more specifically, formulation of IMU

kinematic model, linearized error-state model for orientation and velocity, and IMU

measurement error.

A. IMU Kinematic Model

We employ a simple model that relates the raw gyroscope measurements, ωm and

raw accelerometer measurements, am from IMU to the real angular velocity ω and

real linear acceleration respectively as

ωm(t) = Iω(t) + bg(t) + ng(t)

am(t) = Ia(t) + ba(t) + IRW (t)Wg + na(t) (3.4)

In the above equation, the IMUmeasurements are taken in its local frame, i.e, I , which

accounts for the gravity Wg, gyroscope bias bg, acceleration bias ba, and additive

noise. The additive noise both in acceleration and gyroscope are assumed to be Gaus-

sian white noise with characteristics na ∼ N (03×1,σ
2
a.I3×3), ng ∼ N (03×1,σ

2
g.I3×3)

respectively where we assume that the noise is equal in all three spatial direction for

simplification. The gyro and accelerometer bias are non-static and simulated as ran-

dom walk process with characteristics nbg ∼ N (03×1,σ
2
bg.I3×3), nba ∼ N (03×1,σ

2
ba.I3×3).

Following the formulation from [56], the accelerometer bias is modeled as a bounded

random walk with time constant τ > 0 whereas gyro bias is modeled as random walk.
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The bias driving noise, i.e., nbg and nba corresponds to the process noise, whereas the

rate noise, i.e., nb and na corresponds to the measurement noise.

In the following, we define the differential equations that describe IMU kinematics

combined with bias models as:

I q̇W (t) = 1
2Ω(ωm(t)− bg(t)− ng(t))IqW (t)

ḃg(t) = nbg(t)

W v̇I(t) = WRI(t)(am(t)− ba(t)− na(t))− Wg

ḃa(t) = −1
τ
ba(t) + nba(t)

W ṗI(t) = WvI(t) (3.5)

where the matrix Ω is defined as:

Ω(ω) =

−bωc× ω

−ωT 0

, bωc× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ∈ so(3)

The discrete evolution of the IMU state at time t+ ∆t is obtained by integrating

Eq. (3.6) as follows:

WpI(t+ ∆t) = WpI(t) + WvI(t)∆t−
1
2Wg∆t2 + WRI(t)(am(t)− ba(t)− na(t))∆t2

WvI(t+ ∆t) = WvI(t)− Wg∆t+ WRI(t)(am(t)− ba(t)− na(t))∆t

WqI(t+ ∆t) = WqI(t)⊗
1
2Ω(ωm(t)− bg(t)− ng(t))IqW (t)∆t (3.6)

The motion between two consecutive keyframes k and k+1 in time interval ∆tk,k+1 ∈

[tk, tk+1] can be defined in terms of the preintegration terms, αk+1
Ik

, βk+1
Ik

, and γk+1
Ik

as follows:

IRk
W .Wpk+1

I = IRk
W (WpkI + WvkI∆tk,k+1 −

1
2Wg∆t2k,k+1) +αk+1

Ik

IRk
W .Wvk+1

I = IRk
W (WvkI − Wg∆tk,k+1) + βk+1

Ik

IqkW ⊗ Wqk+1
I = γk+1

Ik
(3.7)
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where

αk+1
Ik

=
∫ ∫
t∈[tk,tk+1]

Rt
Ik

(atm − bta − nta)dt2

βk+1
Ik

=
∫

t∈[tk,tk+1]

Rt
Ik

(atm − bta − nta)dt

γk+1
Ik

=
∫

t∈[tk,tk+1]

1
2Ω(ωtm − btg − ntg)γtIk

dt (3.8)

Taking the expectation of the above equation (Eq. (3.6)) yields the prediction

equations:

I
˙̂qW (t) = 1

2Ω(ω̂(t))I q̂W (t)
˙̂bg(t) = 03×1

W
˙̂vI(t) = WRI(t)(â(t))− Wg

˙̂ba(t) = 03×1

W
˙̂pI(t) = W v̂I(t) (3.9)

where

ω̂(t) = ωm(t)− b̂g(t)

â(t) = am(t)− b̂a(t) (3.10)

Here the bias is constant over the integration interval, as such, the quaternion can be

integrated using the zero-th or first order integrator, using ω̂ and â instead of ω and

a.

B. Continuous Time Linearized Error-State Model

The goal is to determine the continuous time linearized error-state dynamics of the

system, given as follows:

δṗ = δv (3.11)

34



www.manaraa.com

δθ̇ = −bωm − b̂gc×δθ − δbg − ng (3.12)

δv̇ = −R̂bam − b̂ac×δθ − R̂δba − R̂na (3.13)

δḃg = ḃg − ˙̂bg = nbg (3.14)

δḃa = ḃa − ˙̂ba = −1
τ
δba + nba (3.15)

For this section, we dropped the coordinate frame subscripts for readability. The

error-state dynamics for position (Eq. (3.11)), gyro bias (Eq. (3.14)), and accelerom-

eter bias (Eq. (3.15)) are trivial and are derived from linear equations. For velocity

(Eq. (3.12)), and orientation error (Eq. (3.13)) some non-trivial manipulations of the

respective non-linear equations are required to obtain linearized error-state dynamics.

In the following two sections, we provide the derivation for both of them.

B.1 Linear Orientation Error

In order to derive the continuous time linear orientation error δθ̇, we will start with

the definition of error quaternion δq which describes the small rotation that causes

the true quaternion q and it’s estimate q̂ to coincide.

q(t) = q = δq⊗ q̂ | d
dt

q̇ = δq̇⊗ q̂ + δq⊗ ˙̂q (3.16)

Substituting the definition of quaternion time derivative q̇ = 1
2

ω
0

⊗q = 1
2Ω(ω)q

in the above for q̇ and ˙̂q:
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1
2

ω
0

⊗ q = δq̇⊗ q̂ + δq⊗ (1
1

ω̂
0

⊗ q̂)

δq̇⊗ q̂ = 1
2

(ω
0

⊗ q− δq⊗

ω̂
0

⊗ q̂
)

| ⊗ q̂−1

δq̇ = 1
2

(ω
0

⊗ δq− δq⊗
ω

0


)

(3.17)

Combining the gyro model for ω and the definition of ω̂ yields.

ω = ω̂ − δbg − ng (3.18)

Substituting into the above leads to

δq̇ = 1
2

(ω̂
0

⊗ δq− δq⊗
ω̂

0


)
− 1

2

δbg + ng

0

⊗ δq | bδqc×ω̂ = −bω̂c×δq

= 1
2

(−bω̂c× ω̂

−ω̂T 0

 . δq−
bω̂c× ω̂

−ω̂T 0

 . δq
)
− 1

2

δbg + ng

0

⊗ δq

= 1
2

−2bω̂c× 03×1

03×1
T 0

 . δq− 1
2

δbg + ng

0

⊗ δq

= 1
2

−2bω̂c× 03×1

−03×1
T 0

 .
1

2δθ

1

− 1
2

−b(δbg + ng)c× (δbg + ng)

−(δbg + ng)T 0

 .
1

2δθ

1



= 1
2

−2bω̂c× 03×1

03×1
T 0

 .
1

2δθ

1

− 1
2

δbg + ng

0

−O(|δbg||δθ|, |ng||δθ|) (3.19)

Ignoring the second and higher order terms,

δq̇ =

1
2δθ̇

1̇

 =

−bω̂c× 1
2δθ̇ −

1
2(δbg + ng)

0

 (3.20)

and finally recalling ω̂ = ωm − b̂g (Eq. (3.8)) leads to the linearized dynamics of

orientation error

δθ̇ = −bωm − b̂gc×δθ − δbg − ng (3.21)
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B.2 Linear Velocity Error

To determine the dynamics of continuous time linear velocity error, δv̇, we start with

the definition of the error rotation for small-signal approximation of R(t):

R(t) = R = R̂δR = R̂(I + bδθc×) +O(|δθ|)

˙̂v = R̂â− Wg (3.22)

where â = am − b̂a (Eq. (3.8)) Combining the accelerometer model for a and the

definition of â yields:

a = R(â− δba − na)− Wg (3.23)

Now, we express v̇ in two different forms – left and right developments – as follows:

v̇ = ˙̂v + δv̇ = R̂(I + bδθc×)(â− δba − na)− Wg

R̂â− Wg + δv̇ = R̂â− R̂δba − R̂na + R̂bδθc×â− R̂bδθc×(δba + na)− Wg

| − R̂â + Wg

δv̇ = R̂(−δba − na + bδθc×â)− R̂bδθc×(δba + na) +O(|δba|, |δθ|)

(3.24)

Ignoring the second-order and higher terms and applying bac×b = −bbc×a

δv̇ = R̂(−bâc×δθ − δba − na) (3.25)

or finally recalling â = am − b̂a (Eq. (3.8)),

δv̇ = R̂(−bam − b̂ac×δθ − δba − na)

= −R̂bam − b̂ac×δθ − R̂δba − R̂na (3.26)
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At last, the linearized model of the error state takes into the form:

δχ̇R =



δṗ

δθ̇

δv̇

δḃg

δḃa


≈



0 0 I 0 0

0 −bωm − b̂gc× 0 −I 0

0 −R̂bam − b̂ac× 0 −R̂ 0

0 0 0 0 0

0 0 0 0 − 1
τ
I





δp

δθ

δv

δbg

δba


+



0 0 0 0

−I 0 0 0

0 −R̂ 0 0

0 0 I 0

0 0 0 I





ng

na

nbg

nba



= Fc(xR)δχR + Gc(xR)n (3.27)

C. Discrete Time Error State

Since the continuous-time system matrix Fc is constant over the integration period,

discrete-time linearized error state transition matrix can be obtained by:

Fd(xR,∆t) = exp(Fc(xR)∆t)

≈ I15 + Fc(xR)∆t (3.28)

where ∆t is the time difference. The covariance propagation equation can be com-

puted recursively by first-order discrete-time covariance update:

Wp+1
R = Fd(x̂R,∆t)Wp

RFd(x̂R,∆t)
T + Gd(x̂R)QdGd(x̂R)T∆t (3.29)

where Qd = diag(σ2
g.I3,σ

2
a.I3,σ

2
bg.I3,σ

2
ba.I3) is the diagonal covariance matrix con-

taining all the noise densities of the respective processes.

D. IMU Measurement Error Formulation

We express the IMU error term eks(xkR,xk+1
R , zks) as a function of robot states at time

steps k and k + 1 (when the images are taken) and all the IMU measurements zks ,

containing gyro and accelerometer data in-between these time instances. We assume

an approximate normal conditional probability density function f with zero mean and
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variance Wk
s , and the associated conditional covariance Q(δx̂k+1

R |xkR, zks) for given

robot states at camera measurements k and k + 1:

f(eks |xkR,xk+1
R ) ≈ N (0,Wk

s) (3.30)

Using the prediction equations, we can now formulate the IMU error term as the

following which is simply the difference between the prediction based on the previous

state and the actual state:

eks(xkR,xk+1
R , zks) =



IRk
W (W p̂k+1

I − Wpk+1
I )

2[IqkW ⊗ W q̂k+1
I ⊗ Wqk+1

I

−1]1:3

IRk
W (W v̂k+1

I − Wvk+1
I )

b̂
k+1
g − bk+1

g

b̂
k+1
a − bk+1

a


∈ R15 (3.31)

By applying the error propagation law, the associated information matrix is ob-

tained by:

Pk
s = Wk

s

−1 =
 ∂eks
∂δχ̂k+1

R

Q(δx̂k+1
R |xkR, zks)

∂eks
∂δχ̂k+1

R

T
−1

(3.32)

3.4.2 Reprojection Error Formulation

The camera observes the visual corners, which are used to update the motion estimate

of the robot. The reprojection error is formulated as the difference between the feature

observation zi,j,k in image coordinate and the projection of the corresponding 3D point

Ci
pj on to the image plane where i (i = 1 or 2) is the camera index in stereo system,

j is the 3D landmark index which is visible in kth image frame:

ei,j,kr = zi,j,k − hi(Ci
pj) (3.33)

here hi(·) denotes the camera projection model.
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Assuming a perspective camera model, the feature measurement with zero-mean,

and Gaussian white noise, ni,j,k is defined as:

zi,j,k = 1
zi,j,k

xi,j,k
yi,j,k

+ ni,j,k (3.34)


xi,j,k

yi,j,k

zi,j,k

 = Ci
pj = Ci

CI(q)ICW (qk)(Wpj − WpI) + Ci
pI (3.35)

The measurement Jacobian Hi is calculated as:

Hi = Hproj Ci
CI(q)

[
Hk
θ 03×9 Hk

p

]
(3.36)

where Hproj, Hθ, and Hp are the Jacobian of the projection hi(.) into the ith camera

with respect to the landmark in the homogeneous coordinates, orientation, and trans-

lation respectively. Below we show the derivation of each of the them. Calculation

of Hproj and Hp are straight-forward and given by:

Hproj = 1
ẑi,j,k

1 0 − x̂i,j,k

ẑi,j,k

0 1 − ŷi,j,k

ẑi,j,k

 (3.37)

Hk
p = −ICW (q̂) (3.38)

For deriving Hθ, recall the definition of error quaternion from Eq. (3.16), and ex-

pressing in corresponding rotation matrix

q = δq⊗ q̂

ICW (q) = ICW (δq⊗ q̂)

= ICI(δq) . ICW (q̂) (3.39)
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Using the additive error model where q = δq + q̂:

Hk
θ =

(
ICW (qk)− ICW (q̂k)

)
. (Wpj − WpI)

=
(
ICI(δqk) . ICW (q̂k)− ICW (q̂k)

)
. (Wpj − WpI)

=
(
(ICI(δqk)− I3) ICW (q̂k)

)
. (Wpj − WpI) . (Wpj − WpI)

|ICW (δq) ≈ I3 − bδθc×

≈ −bδθc×ICW (q̂k) (Wpj − WpI)

= b
(
ICW (q̂k) (Wpj − WpI)

)
c
×
δθ (3.40)

3.4.3 Sonar Error Term Formulation

The concept behind calculating the sonar range error is that, if the sonar detects any

obstacle at some distance, it is more likely that the visual features would be located

on the surface of that obstacle, and thus will be approximately at the same distance.

The step involves computing a visual patch detected in close proximity of each sonar

point to introduce an extra constraint, using the distance of the sonar point to the

patch. Here, we assume that the visual-feature based patch is small enough and

approximately coplanar with the sonar point.

Figure 3.3: The relationship between sonar measurement and stereo camera features.
A visual feature detected at time k is only detected by the sonar with a delay, at time
k + i, where i depends on the speed the sensor is moving.
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In the presented system, the sonar measurements are used to correct the robot

pose estimate as well as to optimize the use of landmarks coming from both vision and

sonar. Due to the low visibility of underwater environments when it is hard to find

visual features, sonar provides features with accurate scale. A particular challenge

is the temporal displacement between the two sensors, vision and sonar. Figure 3.3

illustrates the structure of the problem, at time k some features are detected by the

stereo camera, it takes some time (until k + i) for the sonar to pass by these visual

features and thus obtain a related measurement. To address the above challenge,

visual features detected in close proximity to the sonar return are grouped together

and used to construct a patch. The distance between the sonar and the visual patch

is used as an additional constraint.

For computational efficiency, the sonar range correction only takes place when a

new camera frame is added to the pose graph. As sonar has a faster measurement rate

than the camera, only the nearest range to the robot pose in terms of timestamp is

used to calculate a small patch from visual landmarks around the sonar landmark for

that given range and head_position. Algorithm 1 shows how to calculate the range

error ekt given the robot position WpkI and the sonar measurement zkt at time k.

The sonar returns range r and head_position θ measurements which are used to

obtain each sonar landmark W l = [lx, ly, lz, 1] in homogeneous coordinate by a simple

geometric transformation in world coordinates:

W l = (WTI ITS[I3|r cos(θ), r sin(θ), 0]TS ) (3.41)

where WTI and ITS are the respective transformation matrices used to transform

the sonar measurement from the sonar coordinates to the world coordinates. ITS

represents the transformation from the sonar frame of reference to the IMU reference

frame, and WTI represents the transformation from the inertial (IMU) frame to the

world coordinates. Consequently, the sonar range prediction is calculated using the

lines 2-9 of Algorithm 1:
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Algorithm 1 SONAR Range Error Algorithm
Input: Estimation of robot position WpkI at time k

Sonar measurement zkt = [r, θ] at time k
List of current visual landmarks, Lv
Distance threshold, Td

Output: Range error ekt at time k
/*Compute sonar landmark in world coordinates*/

1: W l = (WTI ITS[I3|r cos(θ), r sin(θ), 0]TS )
/*Create list of visual landmarks around sonar landmark*/

2: LS = ∅
3: for (every li in Lv ) do

/*Compute Euclidean distance from visual landmark to sonar landmark*/
4: dS = ‖W l− li‖
5: if ( dS < Td) then
6: LS = LS ∪ li
7: end if
8: end for
9: r̂ =

∥∥∥W p̂kI −mean(LS)
∥∥∥

10: return r − r̂

r̂ =
∥∥
W p̂I −mean(LS)

∥∥ , (3.42)

where LS is the subset of visual landmarks around the sonar landmark. As mentioned

above, the concept behind calculating the range error is that, if the sonar detects

any obstacles at some distance, it is more likely that the visual features would be

located on the surface of that obstacle, and thus will be at approximately the same

distance. Thus, the error term is the difference between the two distances. Note that

we approximate the visual patch with the centroid (mean(LS)), to filter out noise on

the visual landmarks.

As such, given the sonar measurement zkt , the error term ekt (WpkI , zkt ) is based

on the difference between those two distances which is used to correct the position

WpkI . We assume an approximate normal conditional probability density function f

with zero mean and Wk
t variance, and the conditional covariance Q(δp̂k|zkt ), updated

iteratively as new sensor measurements are integrated:
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f(ekt |WpkI ) ≈ N (0,Wk
t ) (3.43)

The information matrix is:

Pk
t = Wk

t

−1 =
 ∂ekt
∂δp̂k

Q(δp̂k|zkt )
∂ekt
∂δp̂k

T
−1

(3.44)

The Jacobian can be derived by differentiating the expected range r measurement

with respect to the robot position:

∂ekt
∂δp̂k

=
[
−lx + Wpx

r
,
−ly + Wpy

r
,
−lz + Wpz

r

]
(3.45)

3.4.4 Depth Error Term Formulation

The pressure sensor provides accurate depth measurements based on the water pres-

sure. Depth values are extracted along the gravity direction which is aligned with

the z of the world W – observable due to the tightly coupled IMU integration. The

depth data at time k is given by:

WpzD
k = dk − d0 (3.46)

More precisely, WpzDk = (dk − d0) + init_disp_from_IMU to account for the initial

displacement along z axis from IMU, which is the main reference frame used by visual

SLAM to track the sensor suite/robot.

With depth measurement zku, the depth error term eku(WpzIk, zku) can be calculated

as the difference between the robot position along the z direction and the depth data

to correct the position of the robot. The error term can be defined as:

eku(WpzIk, zku) = |WpzkI −W pz
k
D| (3.47)

The information matrix calculation follows a similar approach as the sonar and

the Jacobian is straight-forward to derive.
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Figure 3.4: Custom made sensor suite mounted on a dual DPV. Sonar scans around
the sensor while the cameras see in front.

3.5 Initialization: Two-step Scale Refinement

A robust and accurate initialization is required for the success of tightly-coupled non-

linear systems, as described in [64, 67]. For underwater deployments, this becomes

even more important as vision is often occluded as well as is negatively affected by the

lack of features for tracking. Indeed, from our comparative study of visual-inertial

based state estimation systems in [46], in underwater datasets, most of the state-

of-the-art systems either fail to initialize or make wrong initialization resulting into

divergence. Hence, we propose a robust initialization method using the sensory in-

formation from stereo camera, IMU, and depth for underwater state estimation. The

reason behind using all these three sensors is to introduce constraints on scale to

have a more accurate estimation on initialization. Note that no acoustic measure-

ments have been used because the sonar range and visual features contain a temporal

difference, which would not allow to have any match between acoustic and visual

features, if the robot is not moving. This is due to the fact that the sonar scans on

a plane over 360◦ around the robot and camera detects features in front of the robot

[72]; see Fig. 3.4.
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In particular, the proposed initialization works as follows. First, we make sure

that the system only initializes when a minimum number of visual features are present

to track (in our experiments 15 worked well). Second, the two-step refinement of the

initial scale from the stereo vision takes place.

The depth sensor provides accurate depth measurements which are used to refine

the initial scale factor from stereo camera. Including a scale factor s1, the transfor-

mation between camera C and depth sensor D can be expressed as

WpzD = s1 ∗ WpzC + WRzCCpD (3.48)

For keyframe k, solving the above equation for s1, provides the first refinement r1

of the initial stereo scale Wpr1C , i.e.,

Wpr1C = s1 ∗ WpC (3.49)

In the second step, the refined measurement from stereo camera in Eq. (3.49)

is aligned with the IMU pre-integral values. Similarly, the transformation between

camera C and IMU I with scale factor s2 can be expressed as:

WpI = s2 ∗ Wpr1C + WRCCpI (3.50)

In addition to refining the scale, we also approximate initial velocity and gravity

vector similar to the method described in [67]. Recalling Eq. (3.7) and Eq. (3.7), the

state prediction from IMU measurements between two consecutive keyframes k and

k+1 in time interval ∆tk,k+1 ∈ [tk, tk+1] can be written as:

W p̂k+1
I = WpkI + WvkI∆tk,k+1 −

1
2Wg∆t2k,k+1 + WRk

Iα
k+1
Ik

W v̂k+1
I = WvkI − Wg∆tk,k+1 + WRk

Iβ
k+1
Ik

W q̂k+1
I = γk+1

Ik
(3.51)
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Eq. (3.51) can be re-arranged with respect to αi+1
Ii

, βi+1
Ii

as follows:

αk+1
Ik

= IRk
W (W p̂k+1

I −W pkI −W vkI∆tk,k+1 + 1
2Wg∆tk,k+1

2)

βk+1
Ik

= IRk
W (W v̂k+1

I −W vkI + Wg∆tk,k+1) (3.52)

Substituting Eq. (3.50) into Eq. (3.52), we can estimate χS = [vkI ,vk+1
I ,W g, s2]T by

solving the linear least square problem in the following form:

min
χS

∑
k∈K

∥∥∥ẑk+1
Sk
−Hk+1

Sk
χS
∥∥∥2

(3.53)

where ẑk+1
Sk

= α̂
k+1
Ik
− IRk

WWRk+1
C Cpk+1

I + IRk
CCpkI

β̂
k+1
Ik


and Hk+1

Sk
=

−I∆tk,k+1 0 1
2 IR

k
W∆tk,k+1

2
IRk

W (Wpr1k+1
C − Wpr1kC)

−I IRk
WWRk+1

I IRk
W∆tk,k+1 0


3.6 Loop-closing and Relocalization

In a sliding window and marginalization based optimization method, drift accumu-

lates over time on the pose estimate. A global optimization and relocalization scheme

is necessary to eliminate this drift and to achieve global consistency. We adapt

DBoW2 [33], a bag of binary words (BoW) place recognition module, and augment

OKVIS for loop detection and relocalization. For each keyframe, the descriptors for

only the keypoints detected during the local tracking are used to build BoW database.

No new features will be detected in the loop closure step.

A pose-graph is maintained to represent the connection between keyframes. In

particular, a node represents a keyframe and an edge between two keyframes exists if
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the matched keypoints ratio between them is more than 0.75. In practice, this results

into a very sparse graph. With each new keyframe in the pose-graph, the loop-closing

module searches for candidates in the bag of words database. A query for detecting

loops to the BoW database only returns the candidates outside the current marginal-

ization window and having greater than or equal to score than the neighbor keyframes

of that node in the pose-graph. If loop is detected, the candidate with the highest

score is retained and feature correspondences between the current keyframe in the

local window and the loop candidate keyframe are obtained to establish connection

between them. The pose-graph is consequently updated with loop information. A

2D-2D descriptor matching and a 3D-2D matching between the known landmark

in the current window keyframe and loop candidate with outlier rejection by PnP

RANSAC is performed to obtain the geometric validation.

When a loop is detected, the global relocalization module aligns the current

keyframe pose in the local window with the pose of the loop keyframe in the pose-

graph by sending back the drift in pose to the windowed sonar-visual-inertial-depth

optimization thread. Also, an additional optimization step, similar to Eq. (3.3), is

taken only with the matched landmarks with loop candidate for calculating the sonar

error term and reprojection error; see Eq. (3.54).

J(x) =
2∑
i=1

K∑
k=1

∑
j∈Loop(i,k)

ei,j,kT

r Pk
rei,j,kr +

K−1∑
k=1

ekT

t Pk
t ekt

(3.54)

After loop detection, a 6-DoF (position, xp and rotation, xq) pose-graph opti-

mization takes place to optimize over relative constraints between poses to correct

drift. The relative transformation between two poses Ti and Tj for current keyframe

in the current window i and keyframe j (either loop candidate keyframe or connected
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keyframe) can be calculated from ∆Tij = TjTi
−1. The error term, ei,jxp,xq between

keyframes i and j is formulated minimally in the tangent space:

ei,jxp,xq = ∆TijT̂iT̂j

−1 (3.55)

where (̂.) denotes the estimated values obtained from local sonar-visual-inertial-depth

optimization. and the cost function to minimize is given by

J(xp,xq) =
∑
i,j

ei,jxp,xq

TPi,j
xp,xqe

i,j
xp,xq +

∑
(i,j)∈Loop

ρ(ei,jxp,xq

TPi,j
xp,xqe

i,j
xp,xq) (3.56)

where Pi,j
xp,xq is the information matrix set to identity, as in [92], and ρ is the Huber

loss function to potentially down-weight any incorrect loops.

3.7 Conclusions

In this chapter, we presented a state estimation system with robust initialization,

sensor fusion of depth, sonar, visual, and inertial data, and loop closure capabili-

ties. While the proposed system can also work out of the water, by disabling the

sensors that are not applicable, our system is specifically targeted for underwater

environments. Experimental results in a standard benchmark dataset and different

underwater datasets demonstrate excellent performance (see Chapter 6).

The appearance of color underwater is different than above, including the color

loss with depth. When most color shifts to blue, there is a loss of sharpness, which

further degrades performance. This will be a venue for further research in the future,

in order to investigate the effect of any color restoration to the state estimation

process. It is worth noting that maintaining the proper attitude of the traversed

trajectory and providing an estimate of the distance traveled will greatly enhance the

autonomous capabilities of the vehicle [81]. Furthermore, accurately modeling the

surrounding structures would enable Aqua2, as well as other vision based underwater

vehicles to operate near, and through, a variety of underwater structures, such as

caves, shipwrecks, and canyons.
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Chapter 4

Contour based Reconstruction of Underwater

Structures Using Sonar, Visual, Inertial, and

Depth Sensors

4.1 Introduction

Underwater cave exploration is one of the most extreme adventures pursued by hu-

mans [22]. It is a dangerous activity with more than 600 fatalities, since the beginning

of underwater cave exploration, that currently attracts many divers. Generating mod-

els of the connectivity between different underwater cave systems together with data

on the depth, distribution, and size of the underwater chambers is extremely impor-

tant for fresh water managements [13], environmental protection, and resource uti-

lization [104]. In addition, caves provide valuable historical evidence as they present

an undisturbed time capsule [1], and information about geological processes [50].

Before venturing beyond the light zone with autonomous robots, it is crucial to

ensure that localization and mapping abilities have been developed and are adequately

robust. Constructing a map of an underwater cave presents many challenges. First

of all, vision underwater is plagued by limited visibility, color absorption, hazing, and

lighting variations. Furthermore, the absence of natural light inside underwater caves

makes localization and mapping more difficult; however, the use of an artificial light

can be used to infer the structure [98]. The most common underwater mapping sensor

is based on sonar, which, when mounted on a moving platform, requires a secondary
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sensor to provide a common frame of reference for the range measurements collected

over time. Furthermore, the majority of sonar sensors generate multiple returns in

enclosed spaces making mapping caves extremely difficult.

In our earlier work, the cone of light perceived by a stereo camera was used to

reconstruct offline the boundaries of a cave in Mexico [98]. No other sensor was avail-

able and the stereo-baseline of 0.03 m limited the accuracy of the reconstruction for

objects further than a couple of meters. More recently, augmenting the visual-inertial

state estimation package OKVIS [56], we fused visual and inertial data together with

acoustic range measurements from a pencil beam sonar, which provide more reliable

distance estimate of features. This allows a more robust and reliable state estimation

[72]. One of the limitations is the granularity of the resulting 3D point cloud: only

few keypoints are typically tracked, resulting in very sparse 3D point cloud, which

cannot be directly used, for example, by an Autonomous Underwater Vehicle (AUV)

to navigate and avoid obstacles. Applying a direct-based method, such as LSD-SLAM

[21], is not straightforward, given the sharp changes in illumination in the underwater

scene. A fundamental difference with most vision based estimation approaches is that

in a cave environment, the light source is constantly moving thus generating shadows

that also move. Consequently the majority of the strong features cannot be used for

estimating the pose of the camera.

In this chapter, we propose a novel system that is able to track the state esti-

mate and at the same time improve the 3-D reconstruction from visual edge based

information in the cave boundaries.

In particular, the proposed approach for real-time reconstruction of the cave envi-

ronment with medium density is based on an underwater SLAM system that combines

acoustic (sonar range), visual (stereo camera), inertial (linear accelerations and angu-

lar velocities), and depth data to estimate the trajectory of the employed sensor suite.

The inspiration for a denser point cloud comes from the following observation: visual
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Figure 4.1: The stereo, inertial, depth, and acoustic sensor suite mounted on a dual
diver propulsion vehicle (DPV) equipped with a flashlight, in front of the Blue Grotto
cavern.

features on the boundaries created by shadows, occlusion edges, and the boundaries of

the artificial illumination (video light) – are all located at the floor, ceiling, and walls

of the cave. The point cloud resulting from such edges is then optimized in a local

bundle adjustment, and can be used for providing a denser reconstruction, enabling

the deployment of AUVs like Aqua2 [19] with advanced swimming gaits [58], navigat-

ing around obstacles without disturbing the sediment at the bottom. Experiments in

caverns and caves validate the proposed approach.

The chapter is structured as follows. Section 4.2 describes the proposed method.

Section 4.5 concludes the chapter. Experimental results are presented in Chapter 6

Section 6.5.

4.2 System Overview

The proposed system augments the approach described in [72, 73] in Chapter 3 to

generate real-time a denser reconstruction of underwater structures exploiting the

boundaries of the structure and the cone-of-light. The proposed system is depicted in

Fig. 4.2. The target hardware system is composed of a stereo camera, a mechanical

scanning profiling Sonar, an IMU, a pressure sensor, and an on-board computer – as
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Figure 4.2: Block diagram of the proposed system; in yellow the sensor input with
frequency from the custom-made sensor suite, in green the components from OKVIS,
in red and blue the contribution from our previous works [72] and [73], and in orange
the new contributions in this paper.
described in Chapter 5. Next, we describe the proposed 3D reconstruction based on

contour matching and the local optimization of such point cloud.

4.3 Feature Selection and 3D Reconstruction from Stereo

Contour Matching

To ensure that the VIO system and the 3D reconstruction can be run in real-time

in parallel, we replaced the OKVIS feature detection method with the one described

[84], which provides a short list of the most prominent features based on the cor-

ner response function in the images. This reduces the computation in the frontend

tracking and, as shown in the results, retains the same accuracy with less computa-

tional requirements. Some studies [68, 85] show comparison between different feature

descriptors for a variety of domains.

We included a real-time stereo contour matching algorithm followed by an outlier

rejection mechanism to produce the point-cloud on the contour created by the light;

see Fig. 6.17c for an example of all the edge-features detected. The approach of
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Figure 4.3: Image in a cave and the detected contours.

Weidner et. al [98] has been adapted for the contours from the intersection of the

cone of light with the cave wall; see Fig. 4.3 for the extracted contours from an

underwater cave. In particular, adaptive thresholding of the images based on the

light and dark areas ensures that the illuminated areas are clearly defined. In our

current work, we also found that sampling from pixels which have rich gradient, e.g.,

edges, provides better and denser point-cloud reconstructions. As such, both types

of edges – one marking the boundaries between the light and dark areas and the

other from visible cave walls – are used to reconstruct the 3-D map of the cave. The

overview of the augmenting Stereo Contour Matching method in our tightly-coupled

Sonar-Visual-Inertial-Depth optimization framework is as follows.

For every frame in the local optimization window, a noisy edge map is created

from the edges described above, followed by a filtering process to discard short con-

tours by calculating their corresponding bounding boxes and only keeping the largest

third percentile. This method retains the highly defined continuous contours of the

surroundings while eliminating spurious false edges, thus allowing to use the pixels

on them as good features to be used in the reconstruction. In a stereo frame, for

every image point on the contour of the left image a BRISK feature descriptor is cal-

culated and matched against the right image searching along the epipolar line. Then

a sub-pixel accurate localization of the matching disparity is performed. Another

layer of filtering is done based on the grouping of the edge detector, i.e., keeping

only the consecutive points belonging to the same contour in a stereo pair. These

stereo contour matched features along with the depth estimation are projected into
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3-D which are projected back for checking the reprojection error consistency resulting

into a point-cloud with very low reprojection error.

The reason behind choosing stereo matched contour features rather than track-

ing them using a semi-direct method is to avoid any spurious edge detection due to

lighting variation in consecutive images, which could lead to erroneous estimation or

even tracking failure. The performance of SVO [30], an open-source state-of-the-art

semi-direct method, in underwater datasets [69, 46] validates this statement. In addi-

tion, though indirect feature extractors and descriptors are invariant to photometric

variations to some extent, using a large number of features for tracking and thus

using them for reconstruction is unrealistic due to the computational complexity of

maintaining them.

4.4 Local Bundle Adjustment (BA) for Contour Features

In the current optimization window, a local BA is performed for all newly detected

stereo contour matched features and the keyframes they are observed in, to achieve

an optimal reconstruction. A joint non-linear optimization is performed for refining

kth keyframe pose WTCi

k and homogeneous landmark j in world coordinateW , W lj =

[lxj, lyj, lzj, lwj] minimizing the cost function:

J(x) =
∑
j,k

ρ(ej,kTPj,kej,k) (4.1)

Hereby Pj,k denotes the information matrix of associated landmark measurement,

ρ is the Huber loss function to down-weight outliers. The reprojection error, ej,k

for landmark j with matched keypoint measurement zj,k in image coordinate in the

respective camera i is defined as:

ej,k = zj,k − hi(WTCi

k,W lj) (4.2)

with camera projection model hi. We used Levenberg-Marquardt to solve local BA

problem which obtains a good estimation for the non-linear optimization system.
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4.5 Discussion and Conclusion

The proposed system improves the point cloud reconstruction and is able to perform

in real time even with additional capabilities. One of the lessons learned during

experimental activities is that the position of the light affects also the quality of the

reconstruction. In the next version of the sensor suite, we plan to mount the dive

light in a fixed position so that the cone of light can be predicted according to the

characteristics of the dive light. Furthermore, setting the maximum distance of the

Sonar according to the specific environment improves the range measurements.

For this work, we deployed the sensor suite either hand-held by a diver – see Fig.

4.4a – or mounted on a DPV – see 4.4b – in a variety of locations. Future plans are

to deploy the sensor suite on a dual DPV which will provide greater stability – see

Fig. 4.1 for preliminary tests. Furthermore, the sonar can be deployed on an AUV,

such as an Aqua2 [19] vehicle – see 4.4c, for autonomous operations.

(a) (b) (c)

Figure 4.4: Data collection approaches: (a) Diver holds the sensor swimming through
the cave. (b) Sensor suite mounted on a DPV. (c) an Aqua 2 vehicle [19] with similar
hardware carrying the scanning sonar collects data over a coral reef.

While this work presents the first initiative towards real-time semi-dense recon-

struction of challenging environments with lighting variations, there are several scopes

for improvements. One future work of interest is to combine a direct method and an

indirect method, similar to [30], but instead of relying on the direct method for track-

ing, we would rely on the robust Sonar-Visual-Inertial-Depth estimate. Thus we will

achieve a denser 3-D reconstruction by jointly minimizing the reprojection and pho-
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tometric error followed by a robust tracking method. We also plan to acquire ground

truth trajectories [99] by placing AprilTags along each trajectory for quantitative

analysis. By deploying the sensor suite on a dual DPV, more accurate results due to

the greater stability are expected, as shown in Fig. 4.1 for preliminary tests.
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Chapter 5

A Modular Sensor Suite for Underwater

Reconstruction

5.1 Introduction

This chapter presents the design, development, and deployment of an underwater

sensor suite to be operated by human divers. The literature mainly focuses on AUVs

and Autonomous Surface Vehicles (ASVs), and a body of work studies the Simultane-

ous Mapping and Localization (SLAM) problem and oceanographic reconstruction.

Leedekerken et al. [54] presented an Autonomous Surface Craft (ASC) for concurrent

mapping both above and below the water surface in large scale marine environments

using a surface craft equipped with imaging sonar for subsurface perception and LI-

DAR, camera, and radar for perception above the surface.

Folaga [3], a low cost AUV, can navigate on the sea surface and dive only at

selected geographical points when measurements are needed. Roman et al. [77]

proposed an AUV equipped with camera and pencil beam sonar for applications in-

cluding underwater photo-mosaicking, 3D image reconstruction, mapping, and navi-

gation. Aqua2 [19], a visually guided legged swimming robot uses vision to navigate

underwater and the target application areas are environmental assessment [42] and

longitudinal analysis of coral reef environments [36]. Our aim is to accelerate state

estimation research in the underwater domain that can be eventually deployed ro-

bustly in autonomous underwater vehicles (AUV) by enabling easy data collection by

human divers. In particular, a specific target application is cave mapping, where the
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Figure 5.1: Our proposed underwater sensor suite mounted on a dual Diver Propulsion
Vehicle (DPV), where a stability check was performed at Blue Grotto, FL.

diving community has protocols in place for exploring and mapping such dangerous

environments. The primary design goal of the proposed underwater sensor suite is

to reduce the cognitive load of human divers by employing robotic technologies to

map underwater structures. A second design goal is to enable software interoper-

ability between different platforms, including AUVs. In particular, the sensor suite

presented in this chapter contains identical sensors with an Aqua2 AUV [19], and

can be deployed in different modes, hand-held by a diver, mounted on a single Diver

Propulsion Vehicle (DPV), or on a dual DPV for better stability; see Fig. 5.1. The

selected sensors include a mechanical scanning sonar, which provides robust range

information about the presence of obstacles. Such a design choice improves the scale

estimation by fusing acoustic range data into the visual-inertial framework [72].

The chapter is structured as follows. The next section outlines the design layout

of hardware and software, deployment strategies, and the two versions of the sensor

suite. The chapter concludes with a discussion on lessons learned and directions of

future work.
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5.2 Sensor Suite Design Requirements

The sensor suite hardware has been designed with underwater cave mapping [98] as

the target application to be used by divers during cave exploration operations. In

general, it can be used for mapping a variety of underwater structures and objects. In

the following, the main requirements, hardware, and software components, are pre-

sented. Note that the full documentation for building and maintaining the hardware,

as well as the necessary software can be found on our lab wiki page [5].

Given that the sensor suite will be primarily used by divers who are not necessarily

engineers or computer scientists, the following requirements drive the hardware and

software design of the proposed sensor suite:

• Portable.

• Neutrally buoyant.

• Hand-held or DPV deployment.

• Simple to operate.

• Waterproof to technical-diver operational depths.

Furthermore, the following desiderata are considered to make research in state

estimation applied to the proposed sensor suite easily portable to other platforms,

such as AUVs and ASVs:

• Standardization of hardware and software.

• Easy data storing.

• Low cost.
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5.3 Hardware Design

In this section, the electronics selected and the designed enclosure are discussed,

together with lessons learned during the construction of the proposed sensor suite.

5.3.1 Electronics

To assist vision-based state estimation, we employ an Inertial Measurement Unit

(IMU), a depth, and an acoustic sensor for accurate state estimation in underwater

environments. The specific sensors and electronics of the sensor suite were selected for

compatibility with the Aqua2 Autonomous Underwater Vehicles (AUVs) [19]. Figure

5.2 shows the computer and internal sensors on a Plexiglas plate, where the different

electronic boards were placed optimizing the space to reduce the size of the sensor

suite. In particular, the electronics consists of:

• two IDS UI-3251LE cameras in a stereo configuration,

• Microstrain 3DM-GX4-15 IMU,

• Bluerobotics Bar30 pressure sensor,

• Intel NUC as the computing unit,

• IMAGENEX 831L Sonar.

The two cameras are synchronized via a TinyLily, an Arduino-compatible board,

and are capable of capturing images of 1600 × 1200 resolution at 20 Hz. The sonar

provides range measurement with maximum range of 6 m distance, scanning in a plane

over 360◦, with angular resolution of 0.9◦. A complete scan at 6 m takes 4 s. Note that

the sonar provides for each measurement (point) 255 intensity values, that is 6/255 m

is the distance between each returned intensity value. Clearly, higher response means

a more likely presence of an obstacle. Sediment on the floor, porous material, and
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Figure 5.2: The Main Unit containing stereo camera, IMU, Intel NUC, and Pressure
sensor.

multiple reflections result in a multi-modal distribution of intensities. The IMU

produces linear accelerations and angular velocities in three axis at a frequency of

100 Hz. Finally, the depth sensor produces depth measurements at 1 Hz. To enable

the easy processing of data, the Robot Operating System (ROS) framework in [70]

has been utilized for the sensor drivers and for recording timestamped data.
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(a) (b) (c)

Figure 5.3: (a) First version of the stereo vision setup, where the two cameras are
mounted externally to the main unit. (b) Second version of the sensor suite, where
the stereo camera is inside the main unit. (c) Second version where the sensor suite
is mounted on a DPV.

A 5 inch LED display has been added to provide visual feedback to the diver

together with a system based on AR tags is used for changing parameters and to

start/stop the recording underwater in [102] (see Section 5.4).

5.3.2 Enclosure

The enclosure for the electronics has been designed to ensure ease of operations by

divers and waterproofness up to 100 m. In particular, two different designs were

tested. Both of them are characterized by the presence of handles for hand-held

operations. The handles have been chosen so that a dive light can be easily added

using a set of articulated arms. Note that all enclosures are sealed with proper o-

rings/gaskets (details are reported in the linked documentation).

In the first design (see Fig. 5.3(a)) the main unit, a square shaped aluminum

box – composed of two parts tighten together by screws – contained the computer,

sensors, and other related electronics. The two cameras were sealed in aluminum

tubes with tempered glass in front of the camera lenses. The stereo camera and

display were mounted on the top of the main unit whereas the sonar was on the bottom

of it. Both the cameras and sonar were connected to the main unit by underwater

cables. The rationale behind such a design was to allow for an adjustable stereo

baseline. Unfortunately, the USB 3.0 interfacing standard used by the cameras is not
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compatible with the underwater cables available in the market, resulting in highly

degraded performance for the cameras with multiple dropped frames. In addition,

the aluminum body made the sensor suite relatively heavy and negative buoyant.

Furthermore, the position of the screen was not optimal for seeing it during regular

diver deployment.

In the second design (see Fig. 5.3b), we took into account the lessons learned

from the first design. In particular, a PVC tube was used instead of the aluminum

box. This made the enclosure lighter and positive buoyant. Some rails at the bottom

allows for adding extra weights for ballasting. Furthermore, the main enclosure hosted

the two cameras as well. In this way, the cameras can be directly connected to the

computer with standard USB 3.0 cables, to avoid unnecessary transmission of data

over underwater cables as it was in the first design. The front panel is made of

transparent Plexiglas, 33 mm thickness, while the back panel is made of aluminum,

where a waterproof switch, a display, pressure sensor, and underwater connector for

the sonar are mounted. Stainless steel Latches are used to close the panels with the

PVC tube, so that it can be easily open and maintained. The sonar was mounted

on the top with the scanning plane parallel to the image plane and connected to

the main unit by a standard SubConn underwater cable. Such a design and choice

of material reduced the size and weight, and made it easier to carry and maintain.

In addition, the second design of the sensor suite allows for modularity in terms of

electronics used: a Plexiglas plate inside the enclosure was used to mount all the

electronics and can be easily removed for troubleshooting or changed with a different

computer, cameras, and IMU.

The second version of the sensor suite has been designed considering two different

deployment strategies: hand-held and on different diver propulsion vehicles (DPV).

Such deployment strategies depend on the structure of the environment and the

distance to cover. The hand-held approach is more appropriate for covering a smaller
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Figure 5.4: Front top view of the assembled sensor suite.

area for a short period of time, whereas the sensor suite can be mounted on a single

or double DPV in order to collect data over longer distances while being under water.

Mounting the rig on a DPV is specifically useful in cave diving, at larger depths,

to make better use of limited underwater time. Hand-held operations are possible

through the handles on the side of the PVC tube, as shown in Fig. 5.3(b). DPV

operations can be performed in two ways. First, mounted on a single DPV unit; see

Fig. 5.3(c). Second, mounted on a dual DPV unit; see Fig. 5.1.

Fig. 5.4 shows a front view of the sensor suite fully assembled. The two side-ring

holders are used to mount a canister battery for the video light; usually, a 13.5Ah

NiMH standard battery.

5.3.3 Mounting Options

Mounting the sensor suite on single or dual DPVs uses different attachment methods.

For single DPV attachment hose-clamps are used through the two metal bars to

secure the sensor; see Fig. 5.5a. Please note, the bottom of the sensor suite has a
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(a) (b) (c)

Figure 5.5: (a) The mounting system for single DPV deployment. (b) Mounting
attachment for use with a dual DPV. (c) The dual DPV attachment partially mount
on the bottom of the sensor suite.

round hollow that fits on a SUEX1 DPV; either XJ37 or XK1 models. For mounting

on a dual DPV, an attachment system is used; see Fig. 5.5b. The PVC components

are hooked through the supporting metal poles at the bottom; see Fig. 5.5c where

the plate is half mounted. When the plate is attached to the bottom of the sensor

suite, then it locks on the railing system of the dual DPV unit. The mounting on

the DPV can be carried out while in water, allowing divers to easily carry modular

parts to the entry point for the dive. It is worth noting that the cheese-board and

rail design allow for changing the location of the sensor on the dual DPV.

Figure 5.6: Sensor suite on a dual DPV free floating, neutrally buoyant.

1https://www.suex.it/
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Fig. 5.6 demonstrates the stability of the sensor suite on a dual DPV. The unit

floats in the water neutrally buoyant, with the video light on top illuminating forward.

5.4 Software Design

The main software components of the sensor suite consist of:

• drivers for each hardware unit,

• a ROS interface for communication between sensors and data processing,

• an interface for user and sensor suite interaction.

5.4.1 Drivers

The aim for the software design is to have a modular system that ensures re-usability

for both the system as a whole and also for each component. Each driver provides

consistent interface for communication with the Robot Operating System (ROS). The

main ROS drivers are:

• UEye driver for each camera, together with the Arduino code for the trigger to

synchronize the cameras – available open-source [4].

• IMU driver – available open-source [51].

• Sonar driver – developed in our lab, released open-source [5].

• Depth sensor driver - developed in our lab, released open-source [5].

5.4.2 ROS platform

For easy data collection, each sensor node publishes the related data. All the opera-

tions are performed on the computer that runs a Linux-based operating system. In
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Figure 5.7: The default view of the menu.

particular, the Software was tested both on Ubuntu 14.04 and 16.04. After the oper-

ating system boot, a startup script runs all sensor nodes and at the same time starts

the recording of sensor data through ROS bag file2 that allows for easy play-back.

5.4.3 Interface

The interface consists of two components: Graphical User Interface (GUI) for online

data monitoring; and AR tags [26] that supports user and sensor suite interaction,

similarly to the proposed system by Sattar et al. [80]. The GUI – based on Qt3 for

modularity – shows the current video stream of each camera and outputs the overall

health of the system. Fig. 5.7 shows the sensor data from the GUI. Depth in feet and

altitude represent the distance from the surface and from the bottom respectively;

measured by the depth and the Sonar sensors. The temperature of the CPU is also

reported in case there is overheating, especially if operations are started above water.

In addition, the GUI shows a menu with a list of options that a user can select;

left side of the screen. Each option has a corresponding AR tag associated with its

number. Through the menu a user can perform basic operations on the computer –

such as reboot or shutdown – start or stop recording data, get access to both camera

2http://wiki.ros.org/rosbag

3https://www.qt.io/
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or sonar settings. When a camera is selected, a user can change its gain and exposure

and perform camera calibration. In addition, sonar data can be visualized through

rviz4 by selecting the corresponding option. Note that such a menu is modular and

straightforward to add, remove, or modify the menu entries. Fig. 5.7 shows how the

GUI looks like.

5.5 Conclusion

In this chapter, we presented the design and development of a sensor suite for un-

derwater reconstruction, together with some lessons learned during its construction.

Our proposed sensor suite has been used by divers in coral reefs, shipwrecks, and cave

systems to collect visual, inertial, and sonar data, and different algorithms have been

studied to improve state estimation in caves.

Immediate future work on the proposed sensor suite includes a comprehensive

study on the quality of cameras for underwater operations, as well as a more user-

friendly electronics placement and wiring. More broadly, such a sensor suite will be

mounted on a platform that can operate autonomously, to allow for easy swap of

sensors on a robot.

4http://wiki.ros.org/rviz
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Chapter 6

Experimental Results and Applications

6.1 Evaluation of SVIn2 on Visual-Inertial Benchmark

The proposed state estimation system, termed as SVIn2, is quantitatively validated

first on a standard dataset, to ensure that loop closure and the initialization work

also above water. Moreover, it is compared to other state-of-the-art methods, i.e.,

VINS-Mono [67], the basic OKVIS [56], and the MSCKF [62] implementation from

the GRASP lab [74]. Second, we qualitatively test the proposed approach on several

different datasets collected utilizing a custom made sensor suite [71] and an Aqua2

AUV [19].

Here, we present results on the EuRoC dataset [10], one of the benchmark datasets

used by many visual-inertial state estimation systems, including OKVIS (Stereo),

VINS-Mono, and MSCKF. To compare the performance, we disable depth and sonar

integration in our method and only assess the loop-closure scheme.

Following the current benchmarking practices, an alignment is performed between

ground truth and estimated trajectory, by minimizing the least mean square errors

between estimate/ground-truth locations, which are temporally close, varying rota-

tion and translation, according to the method from [97]. The resulting metric is the

Root Mean Square Error (RMSE) for the translation, shown in Table 6.1 for several

Machine Hall sequences in the EuRoC dataset. For each package, every sequence

has been run 5 times and the best run (according to RMSE) has been shown. Our

method shows reduced RMSE in every sequence from OKVIS, validating the improve-
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Table 6.1 The best absolute trajectory error (RMSE) in meters for each Machine
Hall EuRoC sequence.
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MH 01 0.13 0.15 0.07 0.21
MH 02 0.08 0.14 0.08 0.24
MH 03 0.07 0.12 0.05 0.24
MH 04 0.13 0.18 0.15 0.46
MH 05 0.15 0.24 0.11 0.54

ment of pose-estimation after loop-closing. SVIn2 has also less RMSE than MSCKF

and slightly higher in some sequences, but comparable, to results from VINS-Mono.

Fig. 6.1 shows the trajectories for each method together with the ground truth for

the Machine Hall sequence.

6.2 Experimental Results of SVIn2 on Our Underwater Datasets

Our proposed state estimation system – SVIn2 – is targeted for the underwater envi-

ronment, where sonar and depth can be fused together with the visual-inertial data.

Here, we show results from four different datasets in three different underwater en-

vironments. First, a sunken bus in Fantasy Lake (NC), where data was collected

by a diver with a custom-made underwater sensor suite [71]. The diver started from

outside the bus, performed a loop around and entered in it from the back door, exited

across and finished at the front-top of the bus. The images are affected by haze and

low visibility. Second and third, data from an underwater cavern in Ginnie Springs

(FL) is collected again by a diver with the same sensor suite as for the sunken bus.

The diver performed several loops, around one spot in the second dataset – Cavern1

– and two spots in the third dataset – Cavern2 – inside the cavern. The environment
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(a) (b)

(c) (d)

(e)

Figure 6.1: Trajectories on the MH sequence of the EuRoC dataset.
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is affected by complete absence of natural light. Fourth, an AUV – Aqua2 robot –

collected data over a fake underwater cemetery in Lake Jocassee (SC) and performed

several loops around the tombstones in a square pattern. The visibility, as well as

brightness and contrast, was very low. In the underwater datasets, it is a challenge to

get any ground truth, because it is a GPS-denied unstructured environment. As such,

the evaluation is qualitative, with a rough estimate on the size of the environment

measured beforehand by the divers collecting the data.

6.2.1 Experimental Setup

The experimental data were collected using a custom made sensor suite [71] and

Aqua2 robot Fig. 6.2, consisting of a stereo camera, an IMU, a depth sensor and a

mechanical scanning Sonar, as described in Chapter 5. More specifically, two USB-

3 uEye cameras in a stereo configuration provide data at 15 Hz, an IMAGENEX

831L mechanical scanning Sonar sensor acquires a full 360◦ scan every four seconds;

the Bluerobotics Bar30 pressure sensor provides depth data at 1 Hz; a MicroStrain

3DM-GX4-15 IMU generates inertial data at 100 Hz; and an Intel NUC running

Linux and ROS consolidates all the data. A video light is attached to the sensor

suite unit to provide artificial illumination of the scene. The Sonar is mounted on

top of the main unit which contains the remaining electronics. The unit can be seen

deployed mounted on a dual Diver Propulsion Vehicle (DPV); please note, the system

is neutrally buoyant and stable. The experiments were run on a computer with an

Intel i7-7700 CPU @ 3.60GHz, 32 GB RAM, running Ubuntu 16.04 and ROS Kinetic

and on an Intel NUC with the same configuration.

6.2.2 Trajectory Evaluation

Figs. 6.3-6.6 show the trajectories from SVIn2, OKVIS, and VINS-Mono in the

datasets just described. MSCKF was able to keep track only for some small segments
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Figure 6.2: The Aqua2 AUV [19] equipped with the scanning sonar collecting data
over the coral reef.

in all the datasets, hence excluded from the plots. For a fair comparison, when

the trajectories were compared against each other, sonar and depth were disabled

in SVIn2. All trajectories are plotted keeping the original scale produced by each

package.

Fig. 6.3 shows the results for the submerged bus dataset. In particular, VINS-

Mono lost track when the exposure increased for quite some time. It tried to re-

initialize, but it was not able to track successfully. Even using histogram equalization

or a contrast adjusted histogram equalization filter, VINS-Mono was not able to track.

Even if the scale drifted, OKVIS was able to track using a contrast adjusted histogram

equalization filter in the image pre-processing step. Without the filter, it lost track

at the high exposure location. The proposed method was able to track, detect, and

correct the loop, successfully.

In Cavern1 – see Fig. 6.4 – VINS-Mono tracked successfully the whole time. How-

ever, as can be noticed in Fig. 6.4c, the scale was incorrect based on empirical ob-

servations during data collection. OKVIS instead produced a good trajectory, and

SVIn2 was also able to detect and close the loops.
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(a) (b)

(c)

Figure 6.3: (a) Submerged bus, Fantasy Lake, NC, USA with a 53 m trajectory;
trajectories from SVIn2 with all sensors enabled shown in rviz (b) and aligned trajec-
tories from SVIn2 with Sonar and depth disabled, OKVIS, and VINS-Mono (c) are
displayed.

In Cavern2 (Fig. 6.5), VINS-Mono lost track at the beginning, reinitialized, was

able to track for some time, and detected a loop, before losing track again. VINS-

Mono had similar behavior even if the images were pre-processed with different filters.

OKVIS tracked well, but as drifts accumulated over time, it was not able to join the

current pose with a previous pose where a loop was expected. SVIn2 was able to

track and reduce the drift in the trajectory with successful loop closure.

In the cemetery dataset – Fig. 6.6 – both VINS-Mono and OKVIS were able to

track, but VINS-Mono was not able to reduce the drift in trajectory, while SVIn2

was able to fuse and correct the loops.
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(a) (b)

(c)

Figure 6.4: (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with a unique
loop covering a 87 m trajectory; trajectories from SVIn2 with all sensors enabled
shown in rviz (b) and aligned trajectories from SVIn2 with Sonar and depth disabled,
OKVIS, and VINS-Mono (c) are displayed.

6.2.3 COLMAP as Comparative Baseline

COLMAP [83], an opensource SfM library, performs best among the conventional

state-of-the-art MVS algorithms as it uses tight integration of multiple techniques,

e.g., robust neighbor view selection and incorporation of visibility constraints. We

used it to generate trajectories for each of our underwater datasets with loop detec-

tion enabled via vocabulary tree search and use them for quantitative performance

evaluation. While COLMAP provides an estimation on the shape of the trajecto-

ries, they cannot be considered as absolute ground truth as the scale information
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(a) (b)

(c)

Figure 6.5: (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with two
loops in different areas covering a 155 m trajectory; trajectories from SVIn2 with all
sensors enabled shown in rviz (b) and aligned trajectories from SVIn2 with Sonar and
depth disabled, OKVIS, and VINS-Mono (c) are displayed.

cannot be recovered. Indeed, for submerged bus, Cavern2, and cemetery datasets

COLMAP only produced partial trajectories due to the water turbidity, low visibil-

ity, and lack of good features to track for a longer period in the scene – an indication

that vision-only state estimation for underwater is not reliable. As such, we aligned

the estimated trajectories with scale from our system as well as the other opensource

visual-inertial packages with respect to COLMAP and calculated RMSE for each of

them, shown in Table 6.2. SVIn2 has lower RMSE in each of the datsets. MSCKF

has been excluded from the table as it failed to track in all of them. Fig. 6.7 shows the
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(a) (b)

(c)

Figure 6.6: (a) Aqua2 in a fake cemetery, Lake Jocassee, SC, USA with a 80 m
trajectory; trajectories from SVIn2 with visual, inertial, and depth sensor (no sonar
data has been used) shown in rviz (b) and aligned trajectories from SVIn2 with Sonar
and depth disabled, OKVIS, and VINS-Mono (c) are displayed.

trajectories for each method together with the ground truth generated by COLMAP

for our underwater datasets.

6.3 Reconstruction using Sonar Data

The proposed approach in Chapter 3 has been tested in numerous challenging environ-

ments. In this section, descriptions of each dataset together with the state estimate

of the sensor suite and challenges during the field trials are presented.
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(a) (b)

(c) (d)

Figure 6.7: COLMAP GT trajectories and estimated trajectories from SVIn2, OKVIS
(stereo), and VINS-Mono aligned with scale. (a) Submerged bus, (b) Cave environ-
ment with a unique loop, (c) Cave environment with two loops in two different area,
and (d) Fake cemetery are shown.
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Table 6.2 The RMSE in meters for each underwater datasets.

SV
In
2

O
K
V
IS
(s
te
re
o)

V
IN

S-
M
on

o

Bus (partial) 0.1031 0.3896 3.1336
Cavern1 0.7052 0.7110 1.1387
Cavern2 (partial) 0.9247 1.4229 1.2796
Cemetery (partial) 1.6778 1.7917 2.2006

One of the first datasets was collected at an artificial shipwreck in Barbados; see

Fig. 6.9a. The initial deployment of the sonar sensor suffered from a misconfiguration

where data was collected at a very slow rate and at a maximum range of one meter

resulting on only collecting sonar data from the floor. Note that Fig. 6.9c shows

the trajectory of the camera going slightly upwards, although the frame shows the

floor parallel to the motion. The shipwreck was sunken on the sea floor with some

inclination, that the IMU was able to capture.

We collected also a short segment from inside a cavern in Ginnie Springs, in

Florida (USA). Such footage provided preliminary data from an underwater cave

environment; see Fig. 6.10a. The video light utilized was providing illumination on

only part of the scene. The reconstruction shows both visual landmarks and sonar

points giving a sense of the cavern as the diver was swimming around. In such a case,

the sonar was correctly configured; however, because the light was not uniformly

illuminating the scene, the visual features were not optimal.

Finally, the inside of a sunken bus was mapped at Fantasy Lake Scuba Park, NC,

USA; see Fig. 6.11a. The image quality was quite poor due to the many particulates

in the water. In all environments, the images contain a significant amount of blur

(softness) which clearly increases with distance. In addition, dynamic obstacles, such

as fish, but more importantly floating particles that reflect back with high intensity;
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Figure 6.8: A small particle reflecting back at high speed generating a blurry streak.
In addition light reflecting back from a nearby surface completely saturates the cam-
era.

see Fig. 6.8, where floating particles were present in all datasets.

In such challenging environments, it is very hard to get ground truth. However,

the trajectory and the distance covered resembled the one followed by the diver.

Further, the sonar landmarks were indeed used to correct the pose estimate. All the

results in the datasets, except for the shipwreck, show several rings, indicating the

mapping of the structure.

(a) (b) (c)

Figure 6.9: Bajan Queen artificial reef (shipwreck) in Carlisle Bay, Barbados. (a)
Sample image of the data collected inside the wreck (beginning of trajectory). (b)
Top view of the reconstruction.
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(a) (b) (c)

Figure 6.10: Underwater cave, Ballroom Ginnie cavern at High Springs, FL, USA.
(a) Sample image of the data collected inside the cavern. (b) Top view of the recon-
struction. (c) Side view of the reconstruction.

(a) (b) (c)

Figure 6.11: Sunken bus, Fantasy Lake Scuba Park, NC, USA. (a) Sample image of
the data collected from inside the bus. (b) Top view of the reconstruction. (c) Side
view of the reconstruction, note the stairs detected by visual features at the right side
of the image.

6.4 Validation on Public Underwater Datasets

Ferrera et al. [25] provided a sequence of underwater datasets close to seabed, named

AQUALOC, collected by a Remotely Operated Vehicle (ROV) equipped with a

monocular monochromatic camera, a MEMS-IMU, and a pressure sensor. The datasets

are characterized by turbidity, backscattering effect, and sandy clouds – Fig. 6.12

shows some representative pictures of the sites. They provided COLMAP trajecto-

ries as ground truth to compare and evaluate performance for SLAM systems. In few

82



www.manaraa.com

(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Sample images from AQUALOC Archaeological sites sequences, affected
by sandy cloud, low and repetitive texture, and lack of light and features.

sequences, e.g., sequence 4 and 7, the ground truth trajectories were not continuous,

hence only provide partial information on the camera poses. We ran SVIn2 on the

two archaeological sites at a depth of approximately 270 meters and 380 meters re-

spectively. SVIn2 was able to generate complete trajectories in all of the sequences

without losing track, the RMSE error typically around 2% of its length, with the

83



www.manaraa.com

Table 6.3 The RMSE in meters for each AQUALOC Archeological sites sequences.

Sequence # 1 2 3 4 5
SVIn RMSE(m) 1.0814 2.4403 0.2801 0.1983 2.7213
Error % 3.33 3.79 2.617 1.09 6.48
Sequence # 6 7 8 9 10
SVIn RMSE(m) 0.6085 1.0526 0.2465 1.5092 2.3710
Error % 1.91 0.86 0.59 2.30 2.83

lowest as in sequence 8 with an error of the 0.5% or highest as in sequence 5 with

6.4%, shown in Table 6.3.

In Fig. 6.13, Fig. 6.14, and Fig. 6.15, we scale align the estimated trajectories

from SVIn and provided ground truth for all the sequences in Archaeological sites

datasets except for sequence 4, as the provided ground truth for this dataset is highly

discontinuous and hence has been plotted with their own scale.

6.5 Experimental Results of the Contour Based Reconstruction

In the following, we present, first, preliminary experiments with DSO [20], a direct

method based visual odometry system showing the problem with photometric con-

sistency, and, second, a qualitative result of the proposed approach in underwater

environment.

6.5.1 Comparison with DSO

Fig. 6.16 shows the result of DSO in the underwater cave dataset in two different

runs, Fig. 6.16a and Fig. 6.16b. DSO did not track for the full length of cave, instead

it was able to keep track just for a small segment due to the variation of the light and

hence violating the photometric consistency assumption of a direct method. Also,

the initialization method is critical as it requires mainly translational movement and

a very small rotational change due to the fact that it is a pure monocular visual
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(a) (b)

(c) (d)

Figure 6.13: SVIn2 trajectories and ground truth alignment for Archaeological se-
quences 1 - 4 in (a) - (d) respectively.
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(a) (b)

(c) (d)

Figure 6.14: SVIn2 trajectories and ground truth alignment for Archaeological se-
quences 5 - 8 in (a) - (d) respectively.
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(a) (b)

Figure 6.15: SVIn2 trajectories and ground truth alignment for Archaeological se-
quences 9 and 10 in (a) and (b) respectively.

(a) (b)

Figure 6.16: Partial trajectories generated by DSO. (a) Incorrect odometry and failing
to track just after a few seconds and (b) longer trajectory after starting at a place
with better illumination which also fails later on.

SLAM. We ran DSO with different starting points of the dataset to have a better

initialization; the best one can be seen Fig. 6.16b – eventually failed too because of

the poor lighting.
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(a) (b)

(c)

Figure 6.17: (a) Odometry using only a few strong features (green) for tracking. (b)
Scanning Sonar measurements (red) aligned along the trajectory. (c) Reconstruction
of the cave using the edges detected in the stereo contour points (gray).

6.5.2 Odometry and 3D Cave-Wall Reconstruction

The ballroom at Ginnie Springs, FL, is a cavern open to divers with no cave-diving

training. It provides a safe locale to collect data in an underwater cave environment.

From entering the cavern at a depth of seven meters, the sensor was taken down

to fifteen meters, and then a closed loop trajectory was traversed three times. As

there is no ground truth available underwater, such as a motion capture system, we

validate our approach from the information collected by the divers during the data

collection procedure. The length of the trajectory produced by our method is 87

meters, consistent with the measure from the divers.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Stereo contour reconstruction results in (b), (d), (f) and the correspond-
ing images in (a), (c), (e) respectively.
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Fig. 6.17 shows the whole trajectory with the different point clouds generated by

the features used for tracking, Sonar data, and stereo contour matching. Keeping

a small set of features for only tracking helps to run the whole system in real-time.

As shown in the figure, Sonar provides a set of sparse but robust points using range

and head_position information. Finally, the stereo contour matched point generates

a denser point-cloud to represent the cave environment. Fig. 6.18 highlights some

specific sections of the cavern, with the image and the corresponding reconstruction

– in gray, the points from the contours; in red the points from the Sonar. As it can

be observed, our proposed method enhances the reconstruction with a dense point

cloud; for example rocks and valleys are clearly visible in Fig. 6.18.

6.6 Applications

(a) (b) (c)

Figure 6.19: (a),(b) show representative photos from the deployments in the pool
in an unknown environment. (a) Avoiding two obstacles in the shallow swimming
pool; (b) Avoiding two obstacles in the deep diving pool. (c) presents the online map
produced by SVIn as a screenshot of RViz for the environments of (b), the robot
avoid the first cylinder, moves forward and then avoids the second, while using the
features from the bottom of the pool to localize.

SVIn enabled other robotics applications including 3D planning for an autonomous

underwater robot in the presence of obstacles [103] to navigate safely in challenging

environments of substantial complexity, with respect to other studies in the past,

even without utilizing a known hydro-dynamics model. The proposed framework

introduces online planning for the Aqua2 hexapod underwater robot with real-time
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re-planning of up to 2 Hz, with using limited on-board computing resources, working

in parallel with SVIn. During operations in an unknown environment, more accurate

localization is useful to detect nearby obstacles, as such the resulting point-cloud

produced by SVIn enables the AUV to navigate safely around obstacles. Fig. 6.19

shows pool experiments with additional sand-toys weighted and placed on the floor to

improve the odometry estimation together with obstacles to test obstacle avoidance.
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Chapter 7

Conclusions

In this dissertation, the problem of Simultaneous Localization and Mapping in un-

derwater environments, combining visual, inertial, acoustic, and pressure information

has been investigated. We focused on the design and development of a robust and

accurate system that exploits the complementarity of different sensors so that robots

can operate autonomously in very harsh environments with robustness, safety, and

reliability to accomplish a task in real-time with limited computational resources. As

vision based stated estimation achieves a certain degree of maturity, more sensors are

being integrated for higher performance accuracy. Extending the well studied prob-

lem of Visual Inertial integration, we introduced a new sensor, a mechanical scanning

sonar, which returns range measurements based on acoustic information. While the

primary motivation of our work has been the mapping of underwater caves, the tech-

nique was tested in different environments, including the a shipwreck at the clear

waters of Barbados, to artificial wrecks in the lakes of the Carolinas.

In Chapter 3 we have presented SVIn, a tightly coupled keyframe-based SLAM

system by integrating sonar, visual, inertial, and pressure measurements in a non-

linear optimization framework. The system includes a method for robust initializa-

tion by two-step scale refinement, loop-closure, and relocalization capabilities as a

failure recovery mechanism. During the different experiments, it became clear that a

minimum visibility and clarity in the visual data is required for basic performance;

however, the visibility in underwater data degraded to a degree not often seen in VO

or VIO approaches. Moreover, the use of a strong video light while necessary in the
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cave environment, it requires careful calibration of its position in order to not saturate

the camera. Furthermore, different surfaces resulted in different reflectance proper-

ties of the acoustic signal; we are currently analyzing the sonar data to improve the

quality. Experimental results in indoor, outdoor, and underwater environments with

publicly available datasets together with collected datasets, proves the effectiveness

of our system.

In Chapter 4 we extended SVIn by utilizing the cone of artificial light and well

defined contours to build a denser 3D model of the environment in real-time. The

integration of multiple sensors improves the quality of the estimation in addition to

the density of the reconstruction. A variety of domains will be affected with under-

water archaeology and speleology being the primary areas. The resulting technology

has been integrated to existing AUVs and ROVs for improving their autonomous

capabilities, including for the purpose of health monitoring of coral reefs combining

a Convolutional Neural Network (CNN) for coral detection and the SLAM system

for mapping and counting [61, 60]; and 3D planning for an autonomous underwater

robot in the presence of obstacles.
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